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Abstract

The issue of word sense ambiguity poses a significant challenge in natural language processing due

to the scarcity of annotated data to feed machine learning models to face the challenge. Therefore,

unsupervised word sense disambiguation methods have been developed to overcome that challenge

without relying on annotated data. This research proposes a new context-aware approach to

unsupervised word sense disambiguation, which provides a flexible mechanism for incorporating

contextual information into the similarity measurement process. We experiment with a popular

benchmark dataset to evaluate the proposed strategy and compare its performance with state-

of-the-art unsupervised word sense disambiguation techniques. The experimental results indicate

that our approach substantially enhances disambiguation accuracy and surpasses the performance

of several existing techniques. Our findings underscore the significance of integrating contextual

information in semantic similarity measurements to manage word sense ambiguity in unsupervised

scenarios effectively.

Keywords: Natural Language Processing, Knowledge Engineering, Semantic Similarity

Measurement

1. Introduction

Semantic similarity refers to the extent to which two text pieces convey the same meaning [24].

Traditional semantic similarity measurement strategies rely on various approaches considering the

overlap of features between the two texts to be compared [12]. However, these approaches suffer

from several limitations, as they fail to consider the context in which the words and phrases are

used. In other words, in conventional semantic similarity measures, the likeness between two

entities is based on their definitions, relationships, and other linguistic or extrinsic features [16].

However, in real-world applications, the context in which entities are being compared can influence

their semantic similarity.
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Furthermore, word sense ambiguity is a common problem in natural language processing (NLP)

because words often have multiple meanings depending on their context. Word sense disambigua-

tion (WSD) aims to identify the correct meaning of a word in a given context [23]. While supervised

WSD approaches have achieved high accuracy, they are limited by the availability of annotated

data. In contrast, unsupervised approaches rely on something other than annotated data but often

suffer from lower accuracy due to that lack of supervision.

This research proposes a Context-Aware Semantic Similarity (CASS) measurement approach

for unsupervised WSD to overcome the accuracy of the results traditionally achieved through

unsupervised strategies. The method incorporates contextual information into the similarity mea-

surement process to reduce language ambiguity. This approach allows us to automatically identify

the most probable sense of an ambiguous word based on its context without relying on annotated

data. By considering the context in which words are being compared, CASS can improve the

accuracy and relevance of search results and recommendations. This can be particularly useful in

many domains where relevance may vary based on user preferences and history.

We must also remark that our strategy is not the first in that direction since several unsuper-

vised WSD techniques have been proposed [29, 22, 8, 27]. However, these methods consider the

specific context in which the words appear following a different approach. Our proposed strategy

addresses currently limitations by means of a novel CASS that adequately incorporates contextual

information into the disambiguation process. Therefore, the primary contributions of this research

can be summarized as follows:

� A novel approach to NLP that considers the context in which words are used to improve

the accuracy and relevance of language models beyond the traditional methods to identify

synonyms. The proposed approach for unsupervised WSD can benefit languages with limited

annotated data, whereas supervised approaches may not be as effective.

� Evaluation of the proposed method on a complete benchmark dataset and comparison of its

performance with several state-of-the-art unsupervised WSD techniques. The experimental

results show that the method improves disambiguation accuracy and outperforms several

existing techniques, especially when annotated data is limited or unavailable.

The remainder of this paper is organized as follows. Section 2 provides an overview of related

work in unsupervised WSD. Section 3 introduces the problem statement of this research. Section 4

presents the details of the proposed CASS measurement approach. In Section 5, the experimental

setup is described, and the evaluation results are presented. Section 6 discusses the results obtained

and directions for future work. Finally, the paper concludes in Section 7.
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2. State-of-the-art

This section presents an overview of CASS measurement, discussing its objectives, and meth-

ods. We review the state-of-the-art techniques used for this task and discuss their challenges and

limitations, such as the difficulty of capturing context-dependent nuances and the lack of a univer-

sally accepted evaluation methodology. Finally, we highlight some of the potential applications.

2.1. Semantic Similarity

Semantic similarity is an essential concept in NLP that has been extensively studied in the

literature [7, 11, 9, 30, 13, 18]. Traditional approaches to measuring semantic similarity are typically

based on the study of inherent characteristics of the words (lexical methods) orits distribution in

sufficiently meaningful text corpora (distributional semantics) [19]. Lexical methods rely on the

meaning of individual words and their relationships to each other [17]. In contrast, distributional

semantics techniques aim to capture the meaning of words based on their co-occurrence patterns

in large corpora [2].

CASS is a family of NLP techniques that measures the semantic similarity between two words

or phrases in a given context. This family has gained increasing attention in recent years due to

its ability to capture not just the meaning of words but additional nuances by considering the

context in which they are used [26]. It represents an extension of traditional semantic similarity

measurement since the latter does not consider the text’s context. Recent advances have seen

the development of CASS methods that consider the context in which words are used. These

approaches recognize that the meaning of a word can vary depending on the specific context in

which it appears.

In addition, there is currently no universally accepted evaluation methodology for assessing the

performance of CASS measures. This lack of consensus makes it difficult to compare and pick the

best approaches for a variety of applications, which slows down overall progress in the field. In

the research that has been done, numerous evaluation measures have been suggested. However,

they frequently have drawbacks, such as favoring particular kinds of data or failing to consider

the activity’s total complexity. Therefore, additional research is required in order to develop a

methodology for evaluation that is both comprehensive and objective.

2.2. Applications

By considering the setting in which words are employed, it is possible to implement specialized

CASS measures to increase text understanding capabilities. This can be especially helpful in

activities such as, for instance, sentiment analysis, in which the meaning of a word can change

based on the context in which it is being used.

CASS is crucial in various applications, including web search, document classification, question-

answering, and text summarization. It measures the semantic similarity between two words, and
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context plays a vital role in determining this similarity. Search engines use semantic similarity

to retrieve documents that match the meaning of the user’s query. In document classification,

understanding the document’s meaning is essential, while understanding the question’s meaning

is crucial in question-answering systems. Text summarization involves condensing much text into

a shorter version, retaining essential information. Semantic similarity can enhance accuracy and

relevance in these applications by capturing language nuances and context.

2.3. Word Sense Disambiguation

CASS measurement and WSD are related concepts in the field of NLP, but they differ signif-

icantly. Semantic similarity measurement involves determining how similar two words or phrases

are in terms of meaning [4]. CASS measurement considers the context in which the words or

phrases appear in a sentence or document and their inherent semantic properties. This approach

can help capture nuances and subtleties in meaning that might be missed by other methods that

rely solely on the intrinsic properties of the words or phrases.

WSD, conversely, is determining which word’s meaning is intended in a particular context [1].

This is particularly important for words with multiple meanings [14]. WSD can be a challenging

problem, especially when the context is ambiguous or there are few clues to help distinguish among

the possible senses [6]. The challenge of unsupervised WSD is also important, as evidenced by

a number of recent papers that provide ideas for meeting the challenge when adequate training

datasets are not available [29, 22, 8, 27]. Therefore, CASS and WSD are essential tools in NLP,

but they have different goals and use cases.

2.4. Contribution over the state-of-the-art

The training-test gap for models based on unsupervised language modeling makes it difficult

for these methods to both compute semantic similarity and perform word sense disambiguation

correctly. Existing annotated datasets are typically small, making it challenging to train supervised

neural models. Our proposed strategy, which incorporates CASS, is the foundation of our contri-

bution to the state-of-the-art since it alleviates the problem in scenarios where appropriate training

datasets are unavailable. We have tested our strategy against the most recent WSD benchmark

dataset and discovered that it performs better in terms of accuracy than other methods. Further-

more, our approach is appropriate for large-scale applications and information retrieval because

it is computationally effective and scalable. Our work thus advances the development of CASS

methodologies and shows how context integration can increase the accuracy and robustness of

WSD techniques.

3. Problem Statement

There are several methods for calculating CASS. Each method has its strengths and limitations,

and the choice of method depends on the application’s specific requirements. However, we can
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decompose the general problem into several subproblems and define them formally, as we will see

below.

3.1. Context-Aware Semantic Similarity Measurement

The problem of context-aware semantic similarity measurement (CASS) can be formulated

mathematically as follows:

Let C be the set of contexts, W be the set of words, and S be the set of semantic similarity

scores between word pairs.

Given a context c ∈ C and two words w1, w2 ∈ W, the task is to compute a CASS score

S(c, w1, w2) ∈ S between the word pair w1, w2 in the context c.

This can be formally developed as a mathematical expression as in Eq. 1:

S(c, w1, w2) = f(c, w1, w2) (1)

where f is the function that maps a context c and two words w1 and w2 to a semantic similarity

score.

The goal is to find a function f that considers the context c in computing the semantic similarity

score S(c, w1, w2). This challenge might benefit from incorporating contextual information, such

as the topic or domain of the text, the user’s interests, or the social context, into the calculation

of semantic similarity.

3.2. Word Sense Disambiguation

Let W be a set of words with multiple senses, and let S be a set of senses associated with each

word in W. Let C be a corpus of text consisting of a set of documents D = {d1, d2, ..., dn}. For

each word w in W, let T (w) be the set of occurrences of w in C, and let S(w) be the set of senses

associated with w.

The goal of WSD is to assign a single sense s in S(w) to each occurrence t in T (w), such that

the assigned sense is the most appropriate for the context in which t appears.

Formally, let S ′(w) = {s1, s2, ..., sm} be a set of candidate senses for word w. For each occur-

rence t in T (w), we seek to find the sense s in S ′(w) that maximizes the probability P(s|t, C),

where C is the context in which t appears. This can be expressed as in Eq. 2.

s∗ = argmaxsP(s|t, C) (2)

where s∗ is the assigned sense for t, and argmaxs denotes the sense that maximizes the prob-

ability.

Several approaches to estimating the probability P(s|t, C) include supervised learning, unsu-

pervised learning, and knowledge-based methods. In supervised learning, an annotated dataset of

word occurrences with their corresponding senses is used to train a classifier that predicts the sense
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for new occurrences. In unsupervised learning, clustering or probabilistic models usually group

similar word occurrences into clusters, each representing a sense. In knowledge-based methods,

external knowledge sources, such as dictionaries or semantic networks, are used to infer the most

appropriate sense for a given word occurrence.

4. Methods

In our research, we aim to tackle the challenge of word ambiguity, which refers to the problem

of words having multiple meanings based on the context in which they are used. We propose

adapting existing methods incorporating contextual information to address this issue.

Among the current state-of-the-art methods for contextual language processing, we identified

four stand-out approaches: BERT [5], ELMo [25], USE [3], and WMD [10]. Each method employs

a unique technique for capturing contextual information, making them suitable for different use

cases [20].

To adapt these methods for addressing the issue of word ambiguity, we propose using them

to create contextualized embeddings. This involves representing each text unit as a vector that

considers the context in which it appears. For instance, BERT (Bidirectional Encoder Represen-

tations from Transformers) [5] is a deep neural network that uses a transformer architecture to

generate contextualized word embeddings. Similarly, ELMo (Embeddings from Language Models)

[25] creates embeddings by training bidirectional models on large text corpora.

On the other hand, USE (Universal Sentence Encoder) [3] is a pre-trained encoder that can

be used to generate sentence embeddings that capture the contextual meaning of a sentence.

Lastly, WMD (Word Mover’s Distance) [10] is a distance-based metric that calculates the similarity

between two documents based on the distance between their constituent words.

Adapting these methods to capture contextual information and create contextualized word

embeddings allows improving the performance of tasks that involve disambiguating words based

on context. Our contribution is to show how existing methods can be adapted for dealing with the

problem of word ambiguity, which has important implications for a wide range of applications.

4.1. Generic approach

We have two documents, X and Y, and we want to calculate their semantic similarity using

embeddings. We first obtain the embeddings for each word in the documents denoted by wX , i

and wY, j, where i and j index the words in the documents X and Y, respectively.

One common method to calculate the semantic similarity between the two documents is to use

the average word embeddings in each document [21]. This means that the document embeddings

can be obtained by averaging the word embeddings as follows:

eX = 1
nX

∑nX
i=1 wX ,i

eB = 1
nY

∑nY
j=1 wY,j
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where nX and nB are the number of words in the documents X and Y, respectively.

Once we have the document embeddings eX and eY , we can calculate their semantic similarity

ss using the cosine approach as in Eq. 3:

ss =

∑nX
i=1

∑nY
j=1 wX , i ·wY, j√∑nX

i=1∥wX , i∥2 ·
√∑

j = 1nY∥wY,j∥2
(3)

Where:

∥·∥ denotes the L2 norm of the embeddings, i.e., the length of the embedding vectors, and ·
denotes the dot product between the embeddings

The sense with the highest similarity score is selected as the disambiguated sense for the target

word. However, the most challenging part remains: figuring out which embeddings yield the best

results.

4.2. BERT embeddings

One popular method that could be used for CASS is based on BERT embeddings [5]. BERT

embeddings are vector representations of words or sentences in a high-dimensional space learned

from large corpora of text. BERT embeddings are context-aware since they capture the meaning

of text units based on their surrounding context and can be used to measure semantic similarity.

Let x1, x2, ..., xn be a sequence of input tokens representing a sentence, and let hi be the

contextualized representation for the i-th token obtained using the BERT model.

We can obtain the sentence-level embedding S by taking a weighted average of the token

embeddings as in Eq. 4:

S =
1

n

n∑
i=1

αihi (4)

where αi is the weight assigned to the i-th token, and is given by Eq. 5:

αi =
exp(wThi)∑n
j=1 exp(w

Thj)
(5)

Here, w is a learnable parameter vector that determines the importance of each token in the

sentence representation.

Note that the weights αi are learned during training and are used to give higher importance

to tokens more relevant to the task. In practice, the sentence-level embedding S is often used as

input to other NLP tasks.

4.3. ELMo

ELMo is a deep contextualized word representation model using a bi-directional language

(biLM) to generate word embeddings [25]. The biLM is trained on a large corpus of text data
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to predict the next word in a sequence of words given the previous words in both forward and

backward directions.

By combining the hidden states of the biLM at each layer, one can produce the ELMo repre-

sentation of a word. Let us denote the biLM as a function fbiLM (x) that takes a sequence of words

x as input and produces a set of hidden states H = h1, h2, ..., hL at each layer l.

The ELMo representation of a sentence si is then computed as a weighted sum of the hidden

states at each layer L as in Eq. 6:

ELMos = γs
[∑

j = 0L−1sj ·wj
]
+ γsx

L−1∑
j=0

Tj∑
k=1

sj,k ·wj,k

 (6)

where ELMo represents the sentence embedding for a given sentence s, L is the number of layers

in the ELMo model, Tj is the number of tokens in the j-th layer, sj and sj,k are the activations

of the j-th layer for the entire sentence and the k-th token in the j-th layer, respectively, wj and

wj, k are the corresponding weights for the j-th layer and the k-th token in the j-th layer, and γs

and γs
x are scalar weights that are learned during training.

The learned weights capture the importance of each layer for the specific task and allow ELMo

to generate context-dependent embeddings that are useful for our purposes.

4.4. Universal Sentence Enconder

Let us say we have two documents, X and Y, and we want to calculate their semantic similarity

using the USE embeddings [3]. We first obtain the USE embeddings of X and Y, denoted by eX

and eY, respectively.

The semantic similarity ss between eX and eY is then calculated as in Eq. 7:

ss =
eX · eY

∥eX ∥ · ∥eY∥
(7)

Where:

· denotes the dot product between the embeddings, and ∥·∥ denotes the L2 norm of the em-

beddings, i.e., the length of the embedding vectors

If necessary, Eq. 8 can also work with items from the documents.

ss =

∑
i(eX i · eY⟩)√∑

i(e
2
X i) ·

√∑
i(e

2
Yi)

(8)

Where:

eXi and eY i are the ith elements of the embeddings eX and eY, respectively.
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4.5. Word Mover’s Distance

The Word Mover’s Distance (WMD) measures the semantic similarity between two texts, which

considers the distances between the individual words in the texts [10]. The mathematical formu-

lation of the WMD can be described as follows:

Let D be a metric space of word embeddings, and let be X and Y two documents consisting

of n and m words, respectively. We also have a matrix T , which tells us how much of a word in

X moves to a word in Y, and this is represented by a non-negative number in Tij . The cost of

moving from one word to another is represented by c(i, j), which is the distance between the word

i and word j. We need to make sure that the total flow from each word in X is equivalent to the

value of Xi, which can be achieved by setting
∑

j Tij = Xi. With these constraints in mind, we

can use Eq. 9 to find the minimum cumulative cost of transforming X into Y.

arg min

n∑
i,j=1

Tijc(i, j)

subject to

n∑
j=1

Tij = Xi ∀i ∈ {1, 2, 3 · · ·n} ∧
n∑

i=1

Tij = Yj ∀j ∈ {1, 2, 3 · · ·n}
(9)

The embeddings use here are usually those from word2vec [21]. Furthermore, the optimization

problem can be solved using linear programming techniques. The resulting WMD measures the

semantic similarity between X and Y, considering the distances between the individual words in

the documents. The WMD has been shown to outperform traditional bag-of-words and vector

space models in capturing the semantic similarity between texts, particularly in cases where the

meaning of the words is essential [28].

5. Results

Here, we showcase the results of our WSD experiments. Through a thorough analysis of various

embedding models, we have compared the outcomes of our proposed strategy with commonly

employed techniques to gauge their impact.

5.1. Empirical Setup and Baseline Selection

Our research proposes a CASS measurement method for unsupervised WSD. The proposed

method measures the semantic similarity between a target word and its candidate senses based on

the context in which the target word appears. We compare our approach with several unsupervised

techniques for each use case in the dataset. The experiments are tested on a standard computer

with 32 GB of RAM memory and an i7-8700 CPU running at 3.20 GHz on Windows 10.

We will use two baselines here, one weak and one strong. The weak baseline (Random Option,

RO) calculates the probability of giving a correct answer randomly. So in cases where two possible
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alternatives are considered, it would be a probability of 50%, in case of three, 33.33%, and so on.

The strong baseline is one of the most commonly used baselines for WSD; the Most Frequent Sense

(MFS) method. The MFS baseline assigns the most frequent sense of a word in a given dataset

to all instances of that word. It is a method that is difficult to replicate in the real world by a

computer because it requires external knowledge (i.e., the most frequent sense for a given word).

However, it is a natural solution for people.

We must compute the most frequent sense of each target word in the training data to implement

this strong baseline. Then, we assign the most frequent sense as the predicted sense for each

instance of the target word in the test data. While this strong is very simple, the literature shows

that it can be surprisingly effective, especially for words with a highly dominant sense.

5.2. Dataset

In this work, we are working with the CoarseWSD-20 dataset [15] that is a dataset for figuring

out the actual meaning of words that, in practice, can have different meanings. The dataset is

made from Wikipedia and only includes nouns. It focuses on 20 words that can have 2 to 5 different

meanings. In total, the dataset contains 10,196 cases, and it is useful for testing WSD models,

as it has all the senses in the test sets. This makes it particularly suitable for evaluating WSD

models.

However, there are certain peculiarities as well. As our method is completely unsupervised,

we do not need to use the training samples offered. At the same time, if we were to compete

with solutions that use such training samples, the comparison would be unfair. So we will limit

ourselves to the comparison with other unsupervised techniques, particularly the weak (RO) and

the strong (MFS) baselines. In addition, we need to make a small adaptation in some mapping

classes, to facilitate the disambiguation.

5.3. Evaluation Criteria

We use a standard evaluation metric called accuracy to evaluate the performance of different

WSD models on the CoarseWSD-20 dataset. Accuracy is the proportion of correctly identified

senses from the total number of instances in the test set. In addition, we will break down the

results by use case and globally. Both for our approach and for the baselines we compare with.

5.4. Empirical Evaluation

We aim to evaluate the proposed CASS measurement method for unsupervised WSD and

compare it with several unsupervised WSD methods. The solid blue color represents the results

obtained through our strategy. The black color represents the weak baseline (the results could be

replicated by selecting a random option). In contrast, the red represents the strong baseline (the

results could be replicated with external knowledge about the most frequently used sense).

10



Strategy Hits Accuracy
UWSD+BERT 7,927 77.74%
MFS-Baseline 7,487 73.43%
UWSD+ELMo 7,010 68.75%
UWSD+USE 6,396 62.73%
UWSD+WMD 5,868 57.55%
RO-Baseline 4,459 43.73%

Table 1: Summary of the global results obtained using the different embedding approaches

Figure 1 shows the initial results obtained with the solution implemented by BERT. As can

be seen, the results are pretty good since the weak baseline is consistently outperformed, and the

strong baseline is almost always outperformed. In addition, there are many use cases where a

wide margin beats the strong baseline. Considering that this strategy does not use any external

resources or training, this can be considered a good performance.

Figure 2 shows the results obtained with the solution implemented by ELMo. As can be seen,

this approach is better than the weak baseline but often fails to outperform the strong baseline.

Therefore, the results are not optimal.

Figure 3 shows the results obtained with the solution implemented by USE embeddings. As can

be seen, several results are even lower than those from the weak baseline, and the strong baseline

is only surpassed in limited cases. In general, when compared to the other approaches studied,

UWSD-USE is not among the best.

Figure 4 shows the results obtained with the solution implemented by WMD. As can be seen,

the results are far from optimal. There are several occasions in which they are even below the

weak baseline, being very rare in the cases in which they manage to overcome the strong baseline.

Generally speaking, this approach is the one that yields the worst results among those studied.

5.5. Comparison with existing techniques

Table 1 summarizes all our global results. The CoarseWSD-20 dataset is still relatively young

and specially designed to perform machine learning, so we are unaware of any other published

work on the unsupervised WSD task. However, our experimentation has many alternatives that

have been tested. As can be seen, all the proposed strategies can outperform the RO baseline

(weak baseline). However, only the strategy that uses BERT embeddings can outperform the MFS

baseline (strong baseline) as well. The strategy followed with implementing BERT embeddings is

an excellent result since it can outperform a method that uses external knowledge without any

extra knowledge or training phase.

Table 2 summarizes all the global results obtained with different BERT models. All these

models have been extensively evaluated for their quality of embedded sentences. As can be seen,

not all models lead to results superior to the baseline. A more in-depth analysis of the reasons

why some models rank better than others remains a future work in progress.
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Figure 1: Results obtained for the CoarseWSD-20 dataset using UWSD+BERT. The solid blue bar represents the
results obtained. While the black and red colors represent the weak and strong baselines, respectively
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Figure 2: Results obtained for the CoarseWSD-20 dataset using UWSD+ELMo. The solid blue bar represents the
results obtained. While the black and red colors represent the weak and strong baselines, respectively
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Figure 3: Results obtained for the CoarseWSD-20 dataset using UWSD+USE. The solid blue bar represents the
results obtained. While the black and red colors represent the weak and strong baselines, respectively
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Figure 4: Results obtained for the CoarseWSD-20 dataset using UWSD+WMD. The solid blue bar represents the
results obtained. While the black and red colors represent the weak and strong baselines, respectively
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Strategy Hits Accuracy
UWSD+BERT+all-mpnet-base-v2 7,927 77.74%
UWSD+BERT+all-MiniLM-L12-v2 7,652 75.05%
UWSD+BERT+all-MiniLM-L6-v2 7,609 74.63%

MFS-Baseline 7,487 73.43%
UWSD+BERT+paraphrase-albert-small-v2 7,104 69.67%
UWSD+BERT+paraphrase-MiniLM-L3-v2 7,098 69.62%

UWSD+BERT+all-distilroberta-v1 5,547 54.40%
RO-Baseline 4,459 43.73%

Table 2: Summary of the results global results obtained using different language models based on BERT

6. Discussion

Our strategy has exhibited promising results in enhancing the accuracy of WSD. By considering

the interplay of words within a specific context, the proposed method can effectively capture the

subtle distinctions in word senses, thereby leading to more precise disambiguation.

One advantage of the proposed strategy is its ability to function without annotated data,

making it more widely applicable to diverse languages and domains. This is particularly crucial

for low-resource languages where annotated data is scarce and expensive to obtain.

Another crucial advantage of our method is its capability to capture the intricate nuances of

meaning that traditional semantic models might overlook. By incorporating contextual informa-

tion, we can differentiate between polysemous words with various meanings in different contexts.

This is particularly significant in applications where accurate representation of meaning is crucial.

The experimental results demonstrate that the proposed method outperforms several unsuper-

vised WSD techniques on the CoarseWSD-20 benchmark dataset. The performance improvement

is particularly remarkable for words with high levels of ambiguity, where conventional semantic

similarity methods often struggle to disambiguate accurately.

While the proposed approach displays promise, some limitations still require addressing. One

limitation is that the approach heavily relies on the quality of available contextual information.

Disambiguation accuracy may be compromised when the context is noisy or ambiguous. Addition-

ally, the proposed approach may perform inadequately in cases where the context is too sparse or

specific, resulting in inadequate information for precise disambiguation.

Future research directions could explore further enhancements to the approach, such as inte-

grating additional sources of contextual information or combining it with other WSD techniques.

Our method can significantly enhance the performance of many NLP tasks. Therefore, we plan

to investigate its applicability to other domains and explore ways to improve its performance.

Another challenge is the scalability of the method as the volume of text data continues to expand.
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7. Conclusion

This work demonstrates that CASS enables machines to process and comprehend human lan-

guage more effectively since it can recognize that the meaning of a word can differ based on the

specific context in which it appears. CASS techniques aim to capture this variability, produce

more precise similarity scores, and enhance the performance of unsupervised WSD strategies.

The proposed method achieved significant improvements in disambiguation accuracy compared

to conventional methods that do not consider contextual information. The fact that the proposed

method performed better than numerous other unsupervised strategies is further evidence of the

method’s usefulness in dealing with the ambiguity of word senses.

We have seen that including contextual information is a proven way to enhance accuracy when

facing unsupervised WSD tasks. Our research suggests that using a strategy of this kind can

address the challenge of interpreting the meaning of language as used in particular settings. The

ability of computers to do so enables them to give users results that are more accurate and relevant,

increasing the effectiveness and efficiency of various applications.

To conclude, CASS and WSD have a great deal of untapped potential that may improve the

accuracy of text understanding and inspire the development of novel NLP applications. Novel

strategies in this direction could lead to the development of solutions that are smarter, more

efficient, and better able to comprehend the complexities and nuances of human language.

Source code

The source code of this approach is published under MIT license in the following GitHub

repository: https://github.com/jorge-martinez-gil/uwsd.
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