
November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

International Journal of Software Engineering and Knowledge Engineering

© World Scientific Publishing Company

A Comparative Study of Ensemble Techniques based on Genetic

Programming: A Case Study in Semantic Similarity Assessment

Jorge Martinez-Gil

Software Competence Center Hagenberg GmbH
Softwarepark 32a, 4232 Hagenberg, Austria

jorge.martinez-gil@scch.at
http://https://www.scch.at

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

The challenge of assessing semantic similarity between pieces of text through computers

has attracted considerable attention from industry and academia. New advances in neural
computation have developed very sophisticated concepts, establishing a new state-of-the-

art in this respect. In this paper, we go one step further by proposing new techniques
built on the existing methods. To do so, we bring to the table the stacking concept that

has given such good results and propose a new architecture for ensemble learning based

on genetic programming. As there are several possible variants, we compare them all
and try to establish which one is the most appropriate to achieve successful results in

this context. Analysis of the experiments indicates that Cartesian Genetic Programming

seems to give better average results.

Keywords: Ensemble Learning; Genetic Programming; Semantic Similarity Measurement

1. Introduction

Making a computer capable of accurately identifying semantic similarities between

pieces of textual information is one of the significant challenges for the scientific

community. The possibility of obtaining good results in this direction is fundamen-

tal in many disciplines spanning databases, information retrieval, natural language

processing, and machine translation, among many others.

Numerous methods, strategies, and frameworks have been proposed for this

purpose. Some of them have achieved extraordinary notoriety thanks to the results.

However, as is often the case in the world of technology, solutions that perform

excellently in one aspect do not do so well for other essential elements. A clear

example of this is artificial neural networks. To date, this family of methods has

outperformed the other families in proposing solutions for the automatic calculation

of semantic similarity. However, while this performance has been outstanding, these

solutions neglect essential aspects such as the interpretability or transferability of

the generated models.

1

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

2 Martinez-Gil

For this and many other reasons, researchers and practitioners have continued

their research looking for more and better alternatives to solve complex situations.

One of these alternatives consists of building learning-to-learn solutions, known as

ensemble learning strategies. Among all the ensemble learning strategies proposed

so far, we look at one in particular called stacking [1].

Ensemble learning refers to a strategy for aggregating several proven perfor-

mance methods for obtaining a better one [2]. Stacking is the ensemble capable

of aggregating existing heterogeneous approaches. There are several other methods

for ensemble learning, for example, bagging and boosting [3]. However, they almost

always work by first aggregating different configurations of the same type of method

and then applying hard and soft voting techniques. In this work, we look at stacking

which consists in putting to work several methods of heterogeneous nature with the

idea of having diversity so that each one performs better in different areas of the

search space to get better results overall.

The benefit of stacking is that they can outperform the results emitted by the

base estimators with much higher accuracy than if only one of them were used. So

each method in the ensemble should be able to make significant contributions in

some regions of the search space. In the other areas where its performance is not as

good, that performance is blurred by the performance of one of the other methods

in the ensemble [4].

Furthemore, additional considerations can be considered, such as that such a

stacking strategy should be easily interpretable [5] or easily transferable to another

scenario [6]. The reason for such a choice is based on the excellent performance

achieved with such strategies in the past.

Regarding the learning part, we must acknowledge that in their attempt to solve

problems in the best possible way, people have delegated to computers the develop-

ment of programs that can perform some tasks. One of the most significant efforts in

this direction is Genetic Programming (GP). This evolutionary strategy attempts

to automatically identify the best possible program for a given task from among all

those in the search space (the space of all possible computer programs). The hy-

pothesis we address in this paper is that GP techniques are ideal for implementing

ensemble learning strategies.

The reasons are various, but it is commonly accepted that by implementing a

stacking strategy, we should be able to achieve a performance equal to or superior

to the best primary method considered [7]. This is of particular interest since the

development of complex computational techniques has yielded outstanding results.

Therefore, we aim to build stacking functions that can guarantee a good perfor-

mance concerning several factors (and not just one, as is currently the case in the

literature). For this reason, we have focused on GP, whereby the fundamental idea

is that the resulting models should not be restricted to any particular format since

they should be malleable enough to accommodate a variety of uses. Therefore, the

contributions of this work are:

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 3

• We explore the concept of ensemble learning via GP with a case study in

semantic similarity assessment. Although the concept of stacking is widely

studied in the literature, the novelty of our approach is twofold: a) on the

one hand, GP techniques have not usually been considered in this domain,

and b) ensemble learning techniques for solving problems associated with

textual semantic similarity have not been addressed in as much depth as

they should be.

• We submit our novel strategies to an empirical study. Since a priori, we

do not know which of the existing GP techniques is the most suitable.

We perform a comparative study to identify the most promising in terms

of the development of ensemble learning strategies for measuring semantic

similarity.

As for the rest of the paper, we have proceeded with an organization: Section 2

shows state-of-the-art ensemble learning techniques, the GP challenge, and its most

promising variants. Section 3 explains how to design and implement stacking tech-

niques using several variants of GP. Section 4 reports the results we have obtained

after subjecting our novel stacking strategies to several experiments with datasets

widely used by the semantic similarity community. Section 5 discusses clearly and

concisely the most significant implications that can be derived from our research

work. Finally, we draw and highlight the conclusions and lessons that can be drawn

from all the research we have carried out.

2. State-of-the-art

The research community is intensely interested in designing solutions to the chal-

lenge of semantic textual similarity in an automatic way [8]. Research along these

lines has grown exponentially in the last few years. The truth is that finding rea-

sonable solutions can benefit a wide range of fields and domains [9]. However, some

researchers have decided not to propose more and more measures of semantic sim-

ilarity but to apply criteria of rationality that allow them to take advantage of all

the work done so far, just in the way that AutoML operates [10]. For this reason,

some of these researchers have turned their eyes to the notion of ensemble learning,

and more specifically, to the concept of stacking to try to create new strategies to

tackle the problem, but without starting from scratch [11].

Thus, we find ourselves in a situation where we have numerous semantic similar-

ity measures, many of which have proven reliability and trustworthiness [12, 13, 14].

In a given scenario, many of them may yield diametrically different results. At first

glance, this fact may seem undesirable. It is paramount to build a strategy that

capitalizes on diversity as its strength and around which to design a much more

accurate and robust semantic similarity problem-solving scheme in the long run.

Furthermore, recent research suggests that practical approaches suitable for

choosing ensemble learning algorithms automatically should be advanced [15]. For

these reasons, we will now review the concepts of ensemble learning, its application

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

4 Martinez-Gil

to the solution of semantic similarity problems, and the existing GP techniques

from which we can benefit to build accurate, interpretable, and transferable stack-

ing strategies. In this way, it seems that ensemble learning will become increasingly

crucial in semantic similarity research in the coming years.

2.1. Semantic Similarity Measurement

The goal of the community has been, for a very long time, to develop systems

that can automatically evaluate the semantic similarity of multiple textual pieces

[16, 17], even if those parts reflect the same true notion but have different lexical

representations [18, 19].

The most significant issue is that an increasing number of fundamental meth-

ods can estimate semantic similarity [20, 21]. There is a profusion of appropriate

approaches accessible, each of which is founded on quite distinct ideas and pre-

sumptions [22], and the knowledge engineer is at a loss as to which one to apply

[23].

As a result, many researchers think acceptably aggregating several semantic sim-

ilarity measures could prevent errors when creating solutions that work reasonably

well in production environments [24, 25, 26, 27, 28, 29].

However, the use of GP to build ensemble strategies has been studied little or

not at all in the past. We think it would be good to fill this gap since GP brings

advantages from the idea of building the meta-models from the ground up. It is

possible, for instance, to impose onto the models the requirement that they are

accurate and interpretable or that they fulfill specific characteristics that make it

possible for them to be transferred to other situations of a similar kind. As a result,

potential advantages of exploring this alternative is to bring in methods that are

much more efficient, interpretable, and require far fewer computational resources to

be ready to operate.

2.2. Ensemble learning

Ensemble learning is a discipline for aggregating individual semantic similarity mea-

sures to generate a model with higher predictive capabilities. Ensemble learning

techniques are used in the literature to solve classification and regression problems.

However, it can also be used to create semantic similarity measures that are sup-

posed to perform better than each of those measures considered individually [30].

In order to generate such an aggregation model, a search process must be avail-

able that tries to best fit the structure, rules, and coefficients of the aggregation

model. This is almost always done against a loss function [31]. Therefore, generating

the final model is quite similar to an optimization process that seeks to maximize

the fitness function for a given metric [32]. Moreover, these search processes dif-

fer enormously from other existing techniques based on algebraic aggregations (i.e.,

which do not admit training), such as the calculation of arithmetic means, weighted

averages, or even hard and soft voting models.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 5

The architecture of a classical stacking strategy is composed of two layers: a

lower layer formed by the basic similarity measures to be aggregated and another

layer at a higher level, which must generate an aggregation model that considers

the items of the lower layer. The values returned by the lower layer components

are often called intermediate predictions and are usually the basis on which the

upper layer predictive model is developed [33]. Since we work with real values, all

the information handled by the stacking strategy comprises this type of numerical

information.

Moreover, if an ensemble learning strategy is well constructed, there are theoret-

ical guarantees about its performance; it can never be inferior to the performance

of the best semantic similarity measure of the inferior capable one [34]. The reason

is evident since, to equal design performance, it would suffice to cancel all semantic

similarity measures except the best one. For this reason, this technique enjoys con-

siderable popularity among the research and industrial community since it prevents

unusual behavior when deployed in real environments.

We use the classical two-layer architecture in this work, but it would be the-

oretically possible to employ more layered architectures [35]. The problem arises

in that each layer adds enormous extra complexity to the system and does not

usually bring significant gains in aspects such as interpretability [5], transferability

[36] or the appetite for resource consumption (both in the form of time and elec-

tric power). If it is strictly necessary to stacketize several layers, the community

usually resorts to deep learning models that have proven reasonably reliable when

processing information of this type.

2.3. Genetic Programming

GP attempts to emulate the natural selection process of animal species to solve a

specific task [37]. It is a computational paradigm where computer programs can be

encoded as individuals from a population that evolves based on well-defined criteria.

Such coding is done through genes representing essential elements of a programming

language, whereby a suitable arrangement of such vital elements results in a com-

puter program. Traditionally, tree-based representation has been predominant in

this context since most imperative programming languages can be instantiated by

means of a tree. However, because it needs to keep many pointers, the tree-based

representation may need to be more memory-efficient in high-performance environ-

ments. Nevertheless, there are ways to fix this issue. For example, if each function

has a fixed number of arguments, the tree can be shown as a linear sequence.

A generation is an iteration from one set of individuals to the next. Through-

out each iteration, each individual’s fitness in the population is assessed. The best

individual, i.e., the individual arrived at after numerous iterations, is the program

that best solves the required task. In order to arrive at such an individual, the

strategy performs several basic operations regularly: It combines individuals to give

rise to a better one and produces mutations so that the search can be extended

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

6 Martinez-Gil

over the entire search space. Each generation is guaranteed at least equal to or

better results than the previous generation. There are currently several paradigms

for implementing a GP scheme that we will review below.

In addition, another line of research called multiobjective genetic programming

(MOGP) aims to build ensemble strategies that satisfy several orthogonal goals

at the same time [38]. In this way, an operator may choose the alternative that

most effectively meets its specific needs. It is impossible to maximize all of the

orthogonal criteria simultaneously, but it is nearly always viable to pick a solution

that optimizes two criteria. For instance, one can select a solution that maximizes

both precision and ease of implementation, accuracy and execution time, or ease of

implementation and execution time, respectively [39]. This can be achieved with the

help of well-established methods such as [40, 41, 42]. We will not cover this variant,

which remains as possible for future work.

We then explain the technical details of our approach, which consists of a com-

parative study to determine which variant of genetic programming best suits the

challenge of generating ensemble techniques that allow the assessment of semantic

similarity.

3. Ensemble learning based on genetic programming

Among all the existing ensemble learning strategies (bagging, boosting, stacking),

we work here with stacking that consists of training a model to aggregate the predic-

tions of multiple different methods. The reason for this is that most of the research

work has found it to be appropriate for dealing with heterogeneous components

such as in this case of semantic similarity [15]. A final prediction is made using the

intermediate results from those methods to produce the final forecast so that:

S : [0, 1]n → [0, 1]

Each of the inputs is called a base estimator. A base estimator is be : µ1×µ2 →
R mapping two variables µ1 and µ2 to a value s ∈ R in [0, 1], where 0 stands for

no similarity at all, and 1 stands for absolute similarity.

To implement such a function S, we need to consider a number of T training

examples so that {(x1, y1), ..., (xN , yN)}. Then, an ensemble learning strategy needs

to build a function f so that f : X → Y , being X the input and Y the output. The

function f is just a specific instance from all the possible functions F . The most

common criterion for selecting such an f is usually the best performance concerning

a loss function, as explained below.

In our specific scenario, we seek to minimize empirical risk; therefore, we need

a loss function to determine what solution best fits the training data. To do that,

given a gold standard GS, i.e., a dataset created and curated by humans, the goal

is to maximize the correlation between the GS and the results from S as shown in

Eq. 1.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 7

S = argmaxS correl(G⃗S(µi, µn), S⃗(µi, µn)) (1)

S can take different semantic similarity measures as input. These measures will

function as base estimators to obtain intermediate predictions to learn a higher-level

predictive strategy.

Concerning the objective to be accomplished, it is essential to remark that we

seek to maximize a correlation coefficient since semantic similarity is typically eval-

uated based on its correlation with human judgment [18] instead of utilizing, for

instance, an evaluation method founded on information retrieval. The type of cor-

relation to consider is strongly dependent on the problem faced.

3.1. Baseline

As a baseline, it is reasonable to choose one of the best-performing methods for

building stacking strategies, i.e., linear regression [43, 44]. The purpose of linear re-

gression is to ascertain the functional link between the several semantic similarity

metrics initially considered [45]. The connection may be described using a mathe-

matical equation, which links the outcome to several semantic similarity measures

as shown in Eq. 2.

⃗̂α = arg min (D, α⃗) = arg min

n∑
i=1

(α⃗ · a⃗i − bi)
2

(2)

This method aims to produce as little an error as possible, i.e., the measurement

of the smallest distance that can be achieved between the points and the regression

line.

3.2. Comparative study of GP variants

GP is a subfield of machine learning that seeks to solve problems for which operators

do not have straightforward solutions. GP’s adaptable nature, untouched by human

preconceptions or biases, enables it to deliver answers that are usually accurate and

interpretable. Individuals are typically encoded by GP utilizing syntax trees. But

since Koza’s initial TGP [46], several research investigations have suggested different

ways to encode GP individuals.

Nevertheless, almost all GP approaches have a few things in common; they

perform operations to select the individuals that will pass to the next generation

by crossover and then mutate some individuals to expand the search space. The

crossover is achieved by swapping random parts of the individual. The mutation is

also performed randomly on some part of the individual. This process is repeated

generation after generation. The evolutionary process ends when one of the indi-

viduals reaches the desired fitness level or when a maximum number of iterations

have been performed even if the desired result was not achieved.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

8 Martinez-Gil

In addition, several variants represent the information differently and look for

optimization by playing with the rules of this representation. This can be done us-

ing binary trees, sequences of instructions, the Cartesian model of directed acyclic

graphs, the evolution of grammars, employing instructions that represent the pro-

cessing of the information through stacks, etc. In this work, we focus on the first

three variants mentioned because they have given outstanding results in the past in

a wide range of specific domains, both in terms of accuracy and low consumption

of computational resources.

3.2.1. Tree-based Genetic Programming

When referring to Tree-like GP (TGP), we are talking about working with programs

represented by tree-like structures, which significantly facilitates the recursive eval-

uation of multivariate expressions [47]. This type of GP is the classical one initially

proposed by [46]. Representing programs as trees is very natural since it allows each

node to be an operator and each terminal node (or leaf) to be an operand. This

representation makes it easy to evolve the programs and calculate their associated

fitness [48]. Moreover, the resulting model is easily exportable to a wide variety of

modern programming languages.

Martinez-Gil and Chaves-Gonzalez [49] developed a method that aggregates se-

mantic similarity measurements that is both successful and easy for people to grasp.

The idea behind that approach is to compute the meta-model that provides the most

significant match for a particular set of input data, which is then constructed using

semantic similarity measures that are well-known and easily understood. This was

made possible by the capacity to learn and improve the computation of the best

viable tree through an evolutionary process. This made it possible for the tree to

have the most optimal structure [49]. Figure 1 shows how a function is represented

as a tree and how it is encoded in an individual to evolve toward finding the desired

result.

sim2 sim1 sim30.87

* max

max

Fig. 1. Representation of the individual: max ((sim2 * 0.87), max(sim1, sim3))

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 9

In TGP, crossover and mutation operators are applied to the parents of the

population. The crossover acts by exchanging randomly selected subtrees from each

of the two parents and results in a new tree. The mutation is applied to a single

randomly selected parent and results in a different tree. This work considers the

classical hoist mutation that promotes a subtree as a result. In addition, it should

be noted that the parsimony rate, or explicit penalty for large programs, is quite

important as a means of controlling code growth in TGP. Otherwise, the size of

the programs could get out of control and bring associated disadvantages such as

over-fitting.

3.2.2. Linear Genetic Programming

Linear Genetic Programming (LGP) is a type of GP that allows programs to be

represented by a sequence of instructions as in imperative programming languages

[50]. The significant differences between the tree variant are how the data flow

associated with the program is handled through the set of available registers and

the existence of non-executable code items (called introns).

A LGP program consists of a variable number of functions and a terminal. It is

possible to represent programs of variable size and that there can be many types of

functions and terminals. In LGP, registers and constants play an important part in

successfully completing this work, and the problem is that they must almost always

be chosen based on experience. Listing 1 shows an example an aggregation strategy

based on LGP.

Listing 1. Example of aggregation strategy using LGP

r [0] = r [0] = sim1 ;

r [1] = r [1] * r [1] ;

r [2] = r [0] + r [1] ;

r [3] = r [1] * sim2 ;

r [4] = r [3] = sim3 ;

r [5] = r [4] * 0 . 3 3 ;

Perhaps the two most important parameters in the context of the LGP are reg-

ister count, and the determination of whether if-then clauses are allowed. The

register count is limited in relation to the number of registers that the program be-

ing learned automatically can handle. There are many studies on how to determine

the optimal number of registers [51]. Also, there are several studies that attempt

to determine if the use of if-then clauses is beneficial [51]. In most situations it is,

since it allows working with a greater diversity of solutions although the cost of

computational resources is higher.

3.2.3. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a GP approach initially developed to

aid in the automatic design of electronic circuits but later became popular as a

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

10 Martinez-Gil

y0

sim2

sim1

sim3

+ - * /

y1

y0 = sim1 * sim3

y1 = sim2 + sim3

Fig. 2. Example of CGP. In contrast to what happens with TGP (where a tree is generated) and

LGP (where an algorithm of linear nature is generated), in CGP, we seek to learn a directed acyclic
graph that represents a computer program

variant of GP [52]. Recently, it has gained much relevance because it has proven its

usefulness in various applications. Due to its origins, and unlike TGP or LGP, this

paradigm aims to encode programs as directed acyclic graphs.

Directed graphs are represented in standard form by a two-dimensional grid

(Cartesian grid). Coding programs as directed graphs has substantial advantages.

For example, nodes can be used multiple times (whereas in TGP, they can only be

used once). In addition, this format is very adaptable to a variety of situations. It

can represent not only programs but systems of equations, electronic circuits, and

even neural networks. Figure 2 shows a clear example of how the CGP paradigm

operates.

In CGP, choosing the grid size on which the graph representing the final program

will be learned is essential. This grid comprises columns and rows, so the graph is

acyclic and directed. This means that a node may only have its inputs connected to

either input data or the output of a node in a previous column. This way, the larger

the grid one might choose to work with, the more computational resources will be

needed to learn the program since the search space will be much larger. In return,

finding better programs to solve the task would be technically possible. In addition,

it is also necessary to choose the preferred type of mutation. The probabilistic

mutation is the most typical in general-purpose contexts.

Another of the most substantial advantages of CGP is that it does not suffer

from the bloat phenomenon, whereby programs become larger and larger without

any benefit in terms of improved fitness function throughout its evolution. This is

significant because bloat is one of the major problems of other variants of GP [53].

However, this approach is also time-consuming and requires mastery of the grid

configuration on which the network is calculated.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 11

4. Empirical evaluation

We present here the results we obtained after testing the different variants of GP

to the design and implementing a stacking strategy that allows us to derive a data-

driven method of predictive capability superior to the basic measures that have

been considered. Therefore, the section consists of a description of the datasets we

are working with, an explanation of the chosen configuration, and the numerical

results obtained in the experimental phase. Then, with the results, we can present

the most significant milestones of this comparative study.

4.1. Datasets

We intend to compare the different variants of GP concerning the baseline and each

other. For our evaluation to be complete, we have chosen three benchmark datasets

oriented to the assessment of the semantic similarity. The criteria for this choice has

been the popularity they enjoy among the community. In fact, it can be observed

that they are recurrently mentioned in a large number of surveys [20, 21], as well

as the coverage of the three different granularity levels of text: word, sentence, and

paragraph. These are the particular characteristics of each of these datasets:

• The first dataset used in our experiments is the so-calledMiller & Charles

(MC) dataset [18]. This is the standard dataset community members use

when evaluating research methodologies that concentrate on general cases.

Therefore, this dataset aims to evaluate the semantic similarity between

words that are components of a general-purpose scenario.

• The second dataset is the so-called GeReSiD dataset [54] and is drawn

from the realm of geospatial research. It covers a pool of textual phrases,

each of which has been grouped into one of 50 unique pairings. This pool

of sentences includes over 100 different geographical expressions. On each

of the 50 pairings, human opinions about the degree of semantic similarity

were solicited and recorded individually. These 50 pairings include samples

that are in no way comparable to one another and others that, in human

view, are virtually indistinguishable from one another.

• The third dataset is the so-called lawSentence200 (LS200) dataseta,

which is a well-known benchmark for comparing legal paragraphs of text.

This dataset comprises 200 paragraphs (several sentences grouped) taken

from legal sources and paired together. In these paragraphs, a panel of legal

professionals carefully labeled the dataset by rating the use cases using a

scale from 1 (absolutely not comparable) to 5 (very similar).

Therefore, the experiments we will perform will be run on 30 use cases grouping

60 individual words of general purpose, 50 use cases grouping 100 short sentences of

specific intent (geographic domain), and 200 use cases grouping 200 paragraphs of

ahttps://github.com/jorge-martinez-gil/nefusi/tree/main/datasets

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

12 Martinez-Gil

specific purpose (legal field). In total, we attempted to solve 280 different use cases

on 560 pieces of textual information, so we have a great diversity of use cases.

4.2. Experimental setup

To facilitate comparisons, we must choose a fixed set of parameters for the three

variants under study. However, this is insufficient since each variant has parameters

affecting the final result. However, we need to do this so that all three variants are

consistent in the key parameters they handle, therefore we use a classical configu-

ration in the field of evolutionary strategies.

• Variables: {Jiang & Conrath [55], Leacock & Chodorow [56], Lin [57],

and Resnik [58] for Miller & Charles} and {BERT [12], ELMO [13]

and USE [14] for the other two datasets}.
• Operators: {sum, subtr, mul, protected div, sin, cos, max, min}
• Fitness measure: Pearson or Spearman Correlation

• Parameters: {Population: 1000, Crossover: 0.70, Mutation: 0.10}
• Criterion for stop: 100% accuracy reached or 5,000 generations

• Cross-validation: 5-crossfold

We have to use two subsets of semantic similarity measures according to the

benchmark we will face because of the diverse nature of the base estimators we

need. While to meet a benchmark dataset composed of individual terms, we have

to use classic dictionary-based base estimators that have proven to work very well;

this would not be possible to work with sentences and paragraphs of a textual

nature. For these last two cases, we must rely on the help of semantic similarity

measures based on transformers that are capable of estimating the similarity of text

strings (where, for example, the position of the words in the sentence or words that

work as modifiers of the complete sentence are essential).

The individual parameters that are associated with each GP variant must also

be taken into account. An extensive explanation of these parameters’ technical

meaning is out of this work’s scope. However, a detailed description can be found

in the seminal papers of each technique.

• TGP [46]: {Hoist mutation: 0.05, Parsimony: 0.01}
• LGP [50]: {Register Count: 6, If-Then Allowed: Yes}
• CGP [52]: {Column: 200, Rows: 1, Mutation: Probabilistic}

Finally, it should be remembered that the linear regression that will act as a

baseline in our experiments does not require the configuration of any parameters

since it is always about minimizing the accumulated point-to-point distance between

the functions to be compared.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 13

LR TGP LGP CGP

0.6

0.8

Fig. 3. Results for PCC over the MC dataset

4.3. Results

When speaking of correlation coefficients, we can always refer to what is perhaps

the most commonly used: Pearson Correlation Coefficient (PCC) and Spearman

Rank Correlation Coefficient (SRCC). The first one is used to estimate the absolute

correlation between a gold standard and the results of the stacking strategy. While

the second is usually used to check the relative (or ordinal) correlation between

the predicted values by the stacking strategy and actual values. We will study the

behavior of the different variants for the two correlation coefficients, one for each

subsection.

4.3.1. Evaluation based on absolute values

PCC is a statistical method that may evaluate how strongly two variables are linked.

It has a value that can vary from -1 to 1, where a value of -1 denotes a negative

linear correlation and a value of 0 indicates no link between the two variables. If the

value is +1, then the two variables have a positive correlation. As we are working

with stochastic methods, i.e., the first population of individuals is always randomly

generated, the results of each run will vary. In addition, we partition the datasets

(training and testing) randomly. Therefore, the results have been calculated after

30 independent runs of each method under study.

Figure 3 shows us the results obtained by measuring the PCC on the MC dataset

[18]. This picture also shows us that all approaches have obtained very similar

results, especially if we look at the fact that the medians are pretty similar. However,

the three GP variants have got much more variability in results.

Figure 4 show us the results obtained by measuring the PCC over the GeReSiD

benchmark dataset [54]. As can be seen, the TGP variant is notoriously different

from the other approaches, which achieve average results and quite similar variabil-

ities.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

14 Martinez-Gil

LR TGP LGP CGP

0.5

0.55

0.6

Fig. 4. Results for PCC over the GeReSiD dataset

LR TGP LGP CGP

0.5

0.6

0.7

0.8

Fig. 5. Results for PCC over the LS200 dataset

Figure 5 shows us the results obtained when measuring the PCC over the LS200

benchmark dataset. As can be seen, it is now the LGP variant that stands out

negatively from the rest of the techniques. The other approaches again have results

that are more or less in line. After all, the parameters and the base estimators these

strategies use are very similar.

4.3.2. Evaluation based on relative values

The SRCC is a statistical method that may provide a concise summary of the

relationship between two variables and the direction in which that association exists

(positive or negative). In this regard, Figure 6 shows us the results obtained when

calculating the SRCC over the MC dataset [18]. Here, instead of working with values

representing an absolute numerical scale, we try to learn meta-models capable of

leading to optimal results on an ordinal or relative numerical scale. As seen in the

figure, the resulting median values are very similar. Only the LGP approach presents

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 15

LR TGP LGP CGP

0.7

0.8

Fig. 6. Results for SRC over the MC dataset

LR TGP LGP CGP

0.5

0.6

0.7

Fig. 7. Results for SRC over the GeReSiD dataset

a considerable variability that leads it to achieve the best maximum results with

a tremendous difference in the relative (ordinal) numerical scale. This is similar to

what happened in the previous experiments.

Figure 7 shows us the results obtained when measuring the SRCC over the

GeReSiD benchmark dataset [54]. This figure shows that the three GP variants get

better results. However, their variability is much higher than that of the GP variant.

Concerning our latest experiment, Figure 8 shows us the results achieved for the

SRCC over the LS200 benchmark dataset. This time, the LGP technique stands

out for the worse in relation to the other approaches.

We now turn to a quantitative and qualitative analysis of our empirical results.

The objective is to compare the different techniques considered as LR (as baseline

technique) and the three variants TGP, LGP, and CGP as strategies to build meta-

models that allow the stacking of fundamental semantic similarity measures to

achieve higher predictive performance.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

16 Martinez-Gil

LR TGP LGP CGP

0.72

0.74

0.76

0.78

Fig. 8. Results for SRC over the LS200 dataset

LR TGP LGP CGP

0

0.5

1

1.5

·104

Pearson Correlation

A
ve
ra
ge

ti
m
e
(m

s)

LR TGP LGP CGP

0

0.5

1

1.5

·104

Spearman Rank Correlation

Fig. 9. Average execution times for the experiments performed

4.3.3. Spacial and Temporal Analysis of the meta-models

We now show a summary of the time needed as well as the final size of the generated

meta-models using the different approaches that we have seen along the work. The

experiments have been performed over a CPU 11th Gen Intel(R) Core(TM) i7-

1185G7 at 3.00GHz with 64 GB RAM memory over Windows 10.

Figure 9 shows a summary of the the results obtained for the 6 experiments in

terms of execution time. It is a visible fact that both the execution time spent to

learn the meta-model and its size are correlated.

Figure 10 shows a summary of the results obtained for the 6 experiments in

terms of size of the meta-model generated. We have measured the size in number

of items, counting operators, variables and constants as one item in a homogeneous

way. The generation of linear code by means of LGP is by far the most expensive

operation. In contrast, the LR model is very inexpensive because only 5 coefficients

are to be optimized. Therefore, both its time and size are the most efficient.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 17

LR TGP LGP CGP

0

20

40

60

Pearson Correlation

A
ve
ra
g
e
si
ze

(#
it
em

s)

LR TGP LGP CGP

0

20

40

60

Spearman Rank Correlation

Fig. 10. Average size of the meta-models generated

We now proceed to analyze all the empirical results collected during the exper-

iments to determine the best and worst performers, respectively.

4.3.4. Analysis and lessons learned

The goal is to extract the most significant lessons that can be learned from this

research. To do that, we proceed to a double analysis: On the one hand, we are

interested in knowing which approaches have performed better among all the exper-

iments, and on the other hand, we are also interested in learning which approaches

have performed worse.

Although we report the results here in summary format, the experiments per-

formed have greatly expanded. We have tested cases in which only words were

compared, cases in which only sentences were compared, and cases in which only

paragraphs of text were compared. Moreover, some of these pieces of textual infor-

mation were extremely specific, for example, those belonging to the LS200 dataset

that pertains to the legal domain.

When comparing the results for each of the experiments we have performed, it

is necessary to note that these results were obtained after testing 30 independent

runs, where both the training sample and the cold start of the strategies were com-

pletely random. Therefore, the results reflect various situations concerning assessing

semantic similarity.

We want to measure this behavior of the different approaches concerning five

fundamental metrics: accuracy in terms of average results obtained for both PCC

and SRCC, accuracy in terms of maximum results obtained for both PCC and

SRCC, variability calculated as the difference between the best and worst results

obtained, time calculated as the number of time units needed to generate the meta-

models, and size which we have represented in bytes and which measures the amount

of space (or size) required to store the meta-model, both in main memory and in

secondary memory.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

18 Martinez-Gil

Table 1 shows the results of the different approaches to compute the best per-

formances. As can be seen, the RL fails to excel in accuracy. However, it is the best

approach when the other metrics are considered. TGP manages to be the best in

terms of accuracy in some situations and still achieves decent results in the other

metrics. LGP results in a somewhat chaotic behavior because although it fails in

many metrics, it reaches the absolute best results in many cases. Finally, CGP

performs quite well, with excellent results in calculating the median accuracy.

LR TGP LGP CGP

Accuracy (median) 0 2 1 3

Accuracy (maximum) 0 1 3 2

Variability 5 0 0 1

Time 5 1 0 0

Size (#items) 4 2 0 0

Table 1. Times each approach has been the best concerning the variables under study

Table 2 shows the summary of the results obtained for the different approaches

but considering the worst performances only. As can be seen, LR gets the worst

results in terms of accuracy on only two occasions, although it is never the worst

in any of the other metrics. TGP and CGP present outstanding results, being

the worst on a minimal number of occasions. Finally, LGP ranks as the worst

approach on numerous occasions, especially regarding time and size variability and

cost. Therefore, the lessons we can learn concerning the different alternatives to

build meta-models from this comparative study are as follows:

LR TGP LGP CGP

Accuracy (median) 2 1 3 0

Accuracy (maximum) 2 2 1 1

Variability 0 2 3 1

Time 0 0 6 0

Size (#items) 0 0 6 0

Table 2. Times each approach has been the worst concerning the variables under study

• Concerning LR, it was always the lightest strategy in terms of the time

needed to learn the model and the physical space required to store it. In

addition, its results showed minor variability. As a disadvantage, it failed

to excel in accuracy in any experiments.

• TGP turned out to be the lightest of the GP-based models. It obtained the

best results on some occasions (both in the median and maximum values)

and always had a lower cost than LGP and CGP.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 19

• Concerning LGP, we have observed poor performance in most variables.

For example, it is always the most space-consuming model (note that more

than 50 lines of code were automatically generated in all attempts), the

one that takes the longest time to learn the meta-model, and the one that

obtains the most variable results. Even so, LGP has stood out for getting

the best maximum results on a more significant number of occasions.

• CGP has performed exceptionally well compared to the other GP variants.

It did not stand out negatively in almost any of the experiments performed

and was the approach with the best performance in obtaining the best

results (considering the median).

Finally, stacking techniques work best when more methods are aggregated (to

some extent) and when there is diversity so that the weaknesses of each technique are

blurred by the strengths of others in different regions of the search space. Designing

a strategy based on size and diversity is always a good idea. It is certain that with

the choice of other semantic similarity measures in which greater degrees of diversity

could be found, the results would have been different.

5. Discussion

Ensemble learning has been a reasonable strategy to face the semantic similarity

challenge over the last few years. To use it to generate a simple but robust ag-

gregation strategy, we have focused our effort on exploring the GP-based family.

However, even in this family, there are several variants of TGP, LGP, or CGP whose

outcomes in a particular situation are often complicated to anticipate. For this rea-

son, we have carried out this comparative study. The following are the lessons we

have learned from this work as well as the threats to the validity of the research.

5.1. Lessons learned

The main benefit of ensembles is that they can take advantage of the capabilities of

a wide range of proven methods to solve semantic similarity problems. Thus, it can

often predict a more accurate result than the methods considered individually. We

have seen how the use of GP techniques can lead to the learning of high-accuracy

ensembles. In this regard, we have performed, for the first time to the best of our

knowledge, a comparative study on the GP variants best suited to the challenge.

We should mention that, unlike what happens with other ensemble learning

methods such as bagging or boosting, when working with stacking, we consider

heterogeneous base estimators and what we are trying to do is to find an aggregation

formula that can identify the parameters that should operate to obtain the best

results.

As we assume that the search space is too large and that in some regions of

this space, some semantic similarity measures will behave better than others, our

goal is to use an evolutionary method that analytically identifies all these facts.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

20 Martinez-Gil

Therefore, we have emphasized diversity’s critical role in completing a suitable

strategy. Moreover, we always keep in mind additional but significant aspects, e.g.,

the interpretability of the resulting aggregation model, which will make people want

to use these models in their daily activities.

5.2. Threats to the validity

We have been working with stochastic techniques, which means that each time we

generate a model, we are likely to obtain a slightly different version from another

model we may have generated previously. This is because the cold start of the

methods requires the random generation of an initial state. In addition, the search

method involves the random mutation of the solutions in search of other beneficial

parameters in other significant parts of the search space. Therefore, given the same

inputs, it is not assured that we will always have the same outputs. Our strategy

to mitigate against the variability of results has been to run 30 instances of each

program independently. The reported results have included statistics regarding the

lower/upper whisker, median, and lower/upper quartile, which reflect very well the

variability of the results obtained.

In addition, after building the ensemble in many cases, we may realize that its

performance is not significantly superior to some of the semantic similarity measures

considered fundamentally. In cases like these, and for simplicity and efficiency, it

is usually a good idea to use only the semantic similarity measure that performed

best within the ensemble. Therefore, it is assumed that the solution yielded by the

ensemble can in no case be inferior to that of the best-represented method.

Furthermore, although throughout this paper, we have discussed the advantages

of using GP to design and implement stacking strategies, it is also necessary to com-

ment on some of its limitations. For example, stacked models consume much time

and electrical energy during training, which is usually not sustainable in the long

term. Not to mention, the base estimators also have to be trained simultaneously. In

such a case, the resources required are usually vast. On top of that, stacking tech-

niques are known to degrade quite frequently and are costly to recalibrate. These

methods may not be optimal in a wide range of situations where sustainability is

an integral part of the strategy to be deployed.

6. Conclusion

This paper has presented our research work on the design and implementation of

ensemble learning techniques using different variants based on GP. These ensem-

ble learning techniques aim to excel in solving problems related to the automatic

assessment of semantic similarity.

We have studied the most promising variants of GP, including TGP, LGP, and

CGP. Although the performance in terms of accuracy is similar, they offer different

performances in additional aspects such as interpretability or transferability. In

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 21

addition, it is deduced that models with superior performance to existing, more

advanced techniques can be achieved in some situations.

Among the lessons learned, although these GP techniques have been little stud-

ied, their performance is promising. Therefore, work in this direction could signif-

icantly contribute to the state-of-the-art. We are referring to the idea of gaining

a few hundredths more in terms of accuracy and generating interpretable models

that the people who use them can trust and solutions that can be reused in other

situations. Alternatively, even allowing the incorporation of background knowledge

makes the models much more helpful in practice.

We have also seen that several families allow the implementation of a stacking

strategy. Besides those based on GP (either TGP, LGP, or CGP), other families are

inspired by neural architectures [59] and architectures based on fuzzy logic [60]. Each

family and subfamily has its characteristics that make them have associated advan-

tages and disadvantages. However, more research needs to be done on the strategies

most appropriate for each family and subfamily. In the end, many decisions are con-

ditioned by the experience of the operator who uses them. The community shares

that there is still much room for experimentation and adaptation of techniques.

Therefore, this is a direction that should be explored in the future.

Acknowledgments

The author thank the anonymous reviewers for their help in improving the work.

This work has been supported by the Austrian Ministry for Transport, Innovation

and Technology, the Federal Ministry of Science, Research and Economy, and the

State of Upper Austria through the COMET center SCCH. And by the project

FR06/2020 - International Cooperation & Mobility (ICM) of the Austrian Agency

for International Cooperation in Education and Research (OeAD-GmbH).

References

[1] D. H. Wolpert, Stacked generalization, Neural Networks 5(2) (1992) 241–259.
[2] X. Dong, Z. Yu, W. Cao, Y. Shi and Q. Ma, A survey on ensemble learning, Frontiers

Comput. Sci. 14(2) (2020) 241–258.
[3] L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996) 123–140.
[4] S. Dzeroski and B. Zenko, Is combining classifiers with stacking better than selecting

the best one?, Mach. Learn. 54(3) (2004) 255–273.
[5] I. Lopez-Gazpio, M. Maritxalar, A. Gonzalez-Agirre, G. Rigau, L. Uria and E. Agirre,

Interpretable semantic textual similarity: Finding and explaining differences between
sentences, Knowl. Based Syst. 119 (2017) 186–199.

[6] E. Haslam, B. Xue and M. Zhang, Further investigation on genetic programming
with transfer learning for symbolic regression, in IEEE Congress on Evolutionary
Computation, CEC 2016, Vancouver, BC, Canada, July 24-29, 2016 , (IEEE, 2016),
pp. 3598–3605.

[7] K. M. Ting and I. H. Witten, Stacked generalizations: When does it work?, in Proceed-
ings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI
97, Nagoya, Japan, August 23-29, 1997, 2 Volumes, (Morgan Kaufmann, 1997), pp.
866–873.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

22 Martinez-Gil

[8] J. J. Lastra-Dı́az, A. Garćıa-Serrano, M. Batet, M. Fernández and F. Chirigati,
HESML: A scalable ontology-based semantic similarity measures library with a set
of reproducible experiments and a replication dataset, Inf. Syst. 66 (2017) 97–118.

[9] J. Martinez-Gil and J. F. Aldana-Montes, Semantic similarity measurement using
historical google search patterns, Inf. Syst. Frontiers 15(3) (2013) 399–410.

[10] X. He, K. Zhao and X. Chu, Automl: A survey of the state-of-the-art, Knowl. Based
Syst. 212 (2021) p. 106622.

[11] M. Heilman and N. Madnani, HENRY-CORE: domain adaptation and stacking for
text similarity, in Proceedings of the Second Joint Conference on Lexical and Com-
putational Semantics, *SEM 2013, June 13-14, 2013, Atlanta, Georgia, USA, eds.
M. T. Diab, T. Baldwin and M. Baroni (Association for Computational Linguistics,
2013), pp. 96–102.

[12] J. Devlin, M. Chang, K. Lee and K. Toutanova, BERT: pre-training of deep bidirec-
tional transformers for language understanding, in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), eds. J. Burstein, C. Doran and T. Solorio
(Association for Computational Linguistics, 2019), pp. 4171–4186.

[13] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and L. Zettle-
moyer, Deep contextualized word representations, in Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers), eds. M. A. Walker, H. Ji and A. Stent
(Association for Computational Linguistics, 2018), pp. 2227–2237.

[14] D. Cer, Y. Yang, S. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, B. Strope and R. Kurzweil, Universal sen-
tence encoder for english, in Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels,
Belgium, October 31 - November 4, 2018 , eds. E. Blanco and W. Lu (Association for
Computational Linguistics, 2018), pp. 169–174.

[15] J. Martinez-Gil, A comprehensive review of stacking methods for semantic similarity
measurement, Machine Learning with Applications 10 (2022) p. 100423.

[16] J. J. Lastra-Dı́az and A. Garćıa-Serrano, A new family of information content models
with an experimental survey on wordnet, Knowl.-Based Syst. 89 (2015) 509–526.

[17] J. J. Lastra-Dı́az, A. Lara-Clares and A. Garćıa-Serrano, HESML: a real-time se-
mantic measures library for the biomedical domain with a reproducible survey, BMC
Bioinform. 23(1) (2022) p. 23.

[18] G. Miller and W. Charles, Contextual correlates of semantic similarity, Language and
Cognitive Processes 6(1) (1991) 1–28.

[19] F. Hill, R. Reichart and A. Korhonen, Simlex-999: Evaluating semantic models with
(genuine) similarity estimation, Comput. Linguistics 41(4) (2015) 665–695.

[20] R. Navigli and F. Martelli, An overview of word and sense similarity, Nat. Lang. Eng.
25(6) (2019) 693–714.

[21] D. Chandrasekaran and V. Mago, Evolution of semantic similarity - A survey, ACM
Comput. Surv. 54(2) (2021) 41:1–41:37.

[22] S. Harispe, S. Ranwez, S. Janaqi and J. Montmain, Semantic similarity from natural
language and ontology analysis Synthesis Lectures on Human Language Technologies
(Morgan & Claypool Publishers, 2015)

[23] J. Martinez-Gil and J. M. Chaves-Gonzalez, Semantic similarity controllers: On the
trade-off between accuracy and interpretability, Knowl. Based Syst. 234 (2021) p.

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 23

107609.
[24] G. Pirrò, A semantic similarity metric combining features and intrinsic information

content, Data Knowl. Eng. 68(11) (2009) 1289–1308.
[25] P. Potash, W. Boag, A. Romanov, V. Ramanishka and A. Rumshisky, Simihawk

at semeval-2016 task 1: A deep ensemble system for semantic textual similarity, in
Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval-
NAACL-HLT 2016, San Diego, CA, USA, June 16-17, 2016 , 2016 pp. 741–748.

[26] J. Martinez-Gil, Coto: A novel approach for fuzzy aggregation of semantic similarity
measures, Cogn. Syst. Res. 40 (2016) 8–17.

[27] G. Zhu and C. A. Iglesias, Computing semantic similarity of concepts in knowledge
graphs, IEEE Trans. Knowl. Data Eng. 29(1) (2017) 72–85.

[28] J. Martinez-Gil and J. M. Chaves-Gonzalez, Automatic design of semantic similarity
controllers based on fuzzy logics, Expert Syst. Appl. 131 (2019) 45–59.

[29] J. Martinez-Gil, R. Mokadem, J. Küng and A. Hameurlain, A novel neurofuzzy ap-
proach for semantic similarity measurement, in Big Data Analytics and Knowledge
Discovery - 23rd International Conference, DaWaK 2021, Virtual Event, September
27-30, 2021, Proceedings, eds. M. Golfarelli, R. Wrembel, G. Kotsis, A. M. Tjoa and
I. Khalil Lecture Notes in Computer Science 12925, (Springer, 2021), pp. 192–203.

[30] A. Ballatore, M. Bertolotto and D. C. Wilson, The semantic similarity ensemble, J.
Spatial Inf. Sci. 7(1) (2013) 27–44.

[31] Z.-H. Zhou, Ensemble methods: foundations and algorithms (CRC press, 2012).
[32] J. Martinez-Gil, Semantic similarity aggregators for very short textual expressions:

a case study on landmarks and points of interest, J. Intell. Inf. Syst. 53(2) (2019)
361–380.

[33] G. I. Webb and Z. Zheng, Multistrategy ensemble learning: Reducing error by com-
bining ensemble learning techniques, IEEE Trans. Knowl. Data Eng. 16(8) (2004)
980–991.

[34] A. L. V. Coelho, C. A. M. Lima and F. J. V. Zuben, Ga-based selection of components
for heterogeneous ensembles of support vector machines, in Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2003, Canberra, Australia, December
8-12, 2003 , (IEEE, 2003), pp. 2238–2245.

[35] A. I. Naimi and L. B. Balzer, Stacked generalization: an introduction to super learn-
ing, European journal of epidemiology 33(5) (2018) 459–464.

[36] L. Torrey and J. Shavlik, Transfer learning, in Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, (IGI global,
2010) pp. 242–264.

[37] N. I. Nikolaev, Genetic programming and data structures: Genetic program-
ming+data structures=automatic programming, Softw. Focus 2(4) (2001) 164–165.

[38] C. J. Hinde, N. Chakravorti and A. A. West, Multi objective symbolic regression,
in Advances in Computational Intelligence Systems - Contributions Presented at the
16th UK Workshop on Computational Intelligence, September 7-9, 2016, Lancaster,
UK , 2016 pp. 481–494.

[39] J. Martinez-Gil and J. M. Chaves-Gonzalez, Sustainable semantic similarity assess-
ment, Journal of Intelligent & Fuzzy Systems 43(5) (2022) 6163–6174.

[40] K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6(2) (2002) 182–197.

[41] S. Kukkonen and J. Lampinen, GDE3: the third evolution step of generalized differ-
ential evolution, in Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, 2-4 September 2005, Edinburgh, UK , (IEEE, 2005), pp. 443–450.

[42] Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

24 Martinez-Gil

decomposition, IEEE Trans. Evol. Comput. 11(6) (2007) 712–731.
[43] J. M. Chaves-Gonzalez and J. Martinez-Gil, Evolutionary algorithm based on differ-

ent semantic similarity functions for synonym recognition in the biomedical domain,
Knowl. Based Syst. 37 62–69.

[44] J. J. Lastra-Dı́az, J. Goikoetxea, M. A. H. Taieb, A. Garćıa-Serrano, M. B. Aouicha
and E. Agirre, A reproducible survey on word embeddings and ontology-based meth-
ods for word similarity: Linear combinations outperform the state of the art, Eng.
Appl. Artif. Intell. 85 (2019) 645–665.

[45] P. Greiner, T. Proisl, S. Evert and B. Kabashi, KLUE-CORE: A regression model of
semantic textual similarity, in Proceedings of the Second Joint Conference on Lexi-
cal and Computational Semantics, *SEM 2013, June 13-14, 2013, Atlanta, Georgia,
USA., 2013 pp. 181–186.

[46] J. R. Koza, Genetic programming: on the programming of computers by means of
natural selection (MIT press, 1992).

[47] E. Vladislavleva, G. Smits and D. den Hertog, On the importance of data balancing
for symbolic regression, IEEE Trans. Evolutionary Computation 14(2) (2010) 252–
277.

[48] M. Affenzeller, S. M. Winkler, G. Kronberger, M. Kommenda, B. Burlacu and S. Wag-
ner, Gaining deeper insights in symbolic regression, in Genetic Programming Theory
and Practice XI [GPTP 2013, University of Michigan, Ann Arbor, USA, May 9-11,
2013]., 2013 pp. 175–190.

[49] J. Martinez-Gil and J. M. Chaves-Gonzalez, A novel method based on symbolic re-
gression for interpretable semantic similarity measurement, Expert Syst. Appl. 160
(2020) p. 113663.

[50] M. Brameier, W. Banzhaf and W. Banzhaf, Linear genetic programming (Springer,
2007).

[51] L. F. D. P. Sotto and V. V. de Melo, Comparison of linear genetic programming
variants for symbolic regression, in Genetic and Evolutionary Computation Confer-
ence, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014, Companion Material
Proceedings, eds. D. V. Arnold and E. Alba (ACM, 2014), pp. 135–136.

[52] J. F. Miller and S. Harding, Cartesian genetic programming, in Genetic and Evo-
lutionary Computation Conference, GECCO 2008, Proceedings, Atlanta, GA, USA,
July 12-16, 2008, Companion Material , eds. C. Ryan and M. Keijzer (ACM, 2008),
pp. 2701–2726.

[53] J. F. Miller, Cartesian genetic programming: its status and future, Genet. Program.
Evolvable Mach. 21(1-2) (2020) 129–168.

[54] A. Ballatore, M. Bertolotto and D. C. Wilson, An evaluative baseline for geo-semantic
relatedness and similarity, GeoInformatica 18(4) (2014) 747–767.

[55] J. J. Jiang and D. W. Conrath, Semantic similarity based on corpus statistics and
lexical taxonomy, in Proceedings of the 10th Research on Computational Linguistics
International Conference, ROCLING 1997, Taipei, Taiwan, August 1997 , 1997 pp.
19–33.

[56] C. Leacock and M. Chodorow, Combining local context and wordnet similarity for
word sense identification, WordNet: An electronic lexical database 49(2) (1998) 265–
283.

[57] D. Lin, An information-theoretic definition of similarity, in Proceedings of the Fif-
teenth International Conference on Machine Learning (ICML 1998), Madison, Wis-
consin, USA, July 24-27, 1998 , 1998 pp. 296–304.

[58] P. Resnik, Using information content to evaluate semantic similarity in a taxonomy,
in Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-

November 10, 2022 12:9 WSPC/INSTRUCTION FILE ws-ijseke

A Comparative Study of Ensemble Techniques based on Genetic Programming 25

gence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, (Morgan
Kaufmann, 1995), pp. 448–453.

[59] Y. Goldberg, Neural network methods for natural language processing, Synthesis
lectures on human language technologies 10(1) (2017) 1–309.

[60] O. Cordón, A historical review of evolutionary learning methods for mamdani-type
fuzzy rule-based systems: Designing interpretable genetic fuzzy systems, Int. J. Ap-
prox. Reason. 52(6) (2011) 894–913.

