
Improving Source Code Similarity Detection Through
GraphCodeBERT and Integration of Additional Features

Jorge Martinez-Gil

Software Competence Center Hagenberg GmbH
Softwarepark 32a, 4232 Hagenberg, Austria

jorge. martinez-gil@ scch. at

Abstract

This paper presents a novel approach for source code similarity detection that integrates an

additional output feature into the classification process to improve model performance. Our ap-

proach is based on the GraphCodeBERT model, extended with a custom output feature layer and

a concatenation mechanism for improved feature representation. The model was trained and eval-

uated, achieving promising precision, recall, and f-measure results. The implementation details,

including model architecture and training strategies, are discussed. The source code that illus-

trates our approach can be downloaded from https://www.github.com/jorge-martinez-gil/

graphcodebert-feature-integration.

Keywords: Feature Integration, GraphCodeBERT, Source Code Similarity

1. Introduction

Accurate and efficient identification of similar source code fragments is essential for ensuring

software quality, improving developer productivity, and maintaining code integrity [1, 22, 23].

With the advent of deep learning (DL) and natural language processing (NLP) techniques,

transformer-based models have emerged as promising strategies for understanding and processing

source code. Recent progress in transformer architectures, particularly models like BERT [3] and

its variants, has shown remarkable success in this context.

When pre-trained on large corpora, transformer models can effectively capture semantic and

syntactic information, making them highly suitable for source code-related tasks. In this research,

we are particularly interested in a transformer variant called GraphCodeBERT [6], specifically

designed to manage source code by processing the structural and semantic properties inherent in

programming languages.

To improve the capabilities of GraphCodeBERT for source code similarity detection, we

propose a novel extension that involves adding a custom output feature layer. This strategy also

jorge.martinez-gil@scch.at
https://www.github.com/jorge-martinez-gil/graphcodebert-feature-integration
https://www.github.com/jorge-martinez-gil/graphcodebert-feature-integration


uses a concatenation mechanism to combine the pooled output from the transformer model with

additional processed features. This approach allows the model to represent the source code better

since it considers both structural and semantic information and can, therefore, be expected to

lead to better results. In this way, the major contributions of this research can be summarized

as follows:

� We present a novel approach that extends the capabilities of GraphCodeBERT by integrat-

ing additional output features into the sequence classification process. We aim to improve

the model’s ability to detect source code similarities by providing a richer feature represen-

tation.

� We evaluate our model’s performance through experiments using well-known datasets. The

results show some degree of improvement in precision, recall, and f-measure, validating the

effectiveness of our model extension.

The remainder of this paper is organized as follows: Section 2 reviews related work in source

code similarity detection and transformer-based models. Section 3 details the methodology,

including the model architecture and training strategies. Section 4 presents the experimental

setup and results and discusses our findings and their implications. Section 5 concludes the

paper and points out potential directions for future research.

2. State-of-the-art

Semantic similarity measurement [19, 13, 14] and in particular, code similarity detection has

seen significant advancements over the years, driven by the need to manage and maintain large

codebases efficiently. Below, we present the historical evolution and the recent progress that has

shaped the current state-of-the-art in this domain.

2.1. Historical Overview

Early approaches to source code similarity detection primarily focused on syntactic analysis,

using methods like string matching, token-based comparison, and abstract syntax tree matching

[11, 20, 21], as well as source code metrics [7]. While useful [8], these techniques often struggled

with coding style and structure variations and faced scalability issues [5], limiting their effec-

tiveness in accurately capturing the semantic similarity between source code fragments. One

explored line was the aggregation of basic techniques through ensemble and stacking methods

[14, 15], but these showed strong results only on small datasets.

The emergence of machine learning (ML) brought more sophisticated methods [16]. Vector

space models and graph-based techniques introduced new ways to represent and compare code

2



fragments [2], incorporating structural properties of code for richer similarity detection [26]. De-

spite their advancements, ML approaches faced challenges in scaling large datasets and managing

diverse programming languages.

DL marked a transformative shift in source code similarity detection [27]. Diverse neural

networks were applied to model source code sequences, capturing syntactic and semantic infor-

mation [25, 28]. These models outperformed traditional methods but struggled to fully capture

long-range dependencies and complex code structures.

Transformer-based models, such as BERT and its variants, have significantly impacted NLP

and code-related tasks. Pre-trained on extensive datasets, these models have shown exceptional

capabilities in understanding context and semantics [9]. The application of transformer models

to source code has further evolved with the development of specialized models for programming

languages, such as CodeBERT [4] and GraphCodeBERT [6]. These models leverage source code’s

textual and structural properties, enabling more accurate similarity detection [17]. However,

techniques to explain model operations remain an open area of research [12], and more efforts

must be made in this direction.

2.2. Contribution Over the State-of-the-art

Our research aims to improve source code similarity detection by extending transformer-

based models and feature integration techniques. We extend these advancements by feeding an

additional output feature into a transformer-based model to detect code similarity. We aim to

improve the model’s representation capabilities and classification performance.

Therefore, our approach advances the use of transformer architectures and feature integration

for more effective code similarity detection. The primary motivation for this extension is to enrich

the representation of source code by incorporating both the structural and semantic properties.

While the transformer model effectively captures contextual information, the output feature layer

provides additional domain-specific features that the base model might not fully capture.

3. GraphCodeBERT and Additional Feature Integration

GraphCodeBERT is a graph-based pre-trained model based on the transformer architecture

for programming languages. It also considers data flow information along with source code se-

quences. The model is trained on a dataset with several million functions and document pairs for

several programming languages. It processes the source code structure for improved understand-

ing and generation. It combines techniques from graph neural networks and transformer-based

models like BERT. Below is a mathematical formulation of the key components and processes

involved in GraphCodeBERT.

3



3.1. Problem Statement

Let C = {C1, C2, . . . , Cn} denote the set of source code fragments. The goal is to determine

whether a given pair of these code fragments (Ci, Cj) ∈ C × C are clones, i.e., functionally

equivalent, or similar. We frame the clone detection problem as a binary classification task. For

a pair of source code fragments (Ci, Cj), the task is to predict the label yij ∈ {0, 1}, where

1 indicates that they are clones and 0 otherwise. We define the input to the classifier as the

concatenation of the embeddings of the code pairs:

xij = [hi;hj ]

3.2. Training Objective

The model can be trained using various objectives depending on the task, such as predicting

randomly masked tokens in the input sequence or generating summaries for given source code

fragments. In the context of this work, the overall loss L is about matching source code fragments

such as the approach presented in [24]. However, our model is trained to minimize the binary

cross-entropy loss:

L(θ) = − 1

N

∑
(i,j)∈D

(yij log ŷij + (1− yij) log(1− ŷij))

where D is the training dataset, ŷij is the predicted probability of Ci and Cj being clones, and

θ represents the model parameters.

3.3. Extension of the Model Architecture

The model is based on a transformer architecture, which is extended to include an additional

output feature for improved functionality. The primary components of this model are an out-

put feature layer and a classifier. The model processes the input data and generates hidden

representations. The output feature layer is a linear layer represented by W1, which maps the

additional output feature to the same dimension as the model’s hidden size. The classifier is

another linear layer, W2, which maps the concatenated features to the number of labels required

for the classification task.

During the forward pass, given inputs X = (input ids,attention mask) and an addi-

tional output feature fout, the following computations occur: the model processes the inputs to

generate hidden states, represented as H = Model(input ids,attention mask). The pooled

output is Ppooled = Hpooler output. The additional output feature is processed through the

linear layer, resulting in Fprocessed = W1 · fout. These two vectors are concatenated to form

C = [Ppooled;Fprocessed]. After applying dropout to C, the final logits are computed as logits =

W2 · Cdropout. For classification tasks, the cross-entropy loss is used to compute the loss:

4



L = CrossEntropyLoss(logits, labels). Each data point consists of a pair of code fragments

(code1, code2), a similarity score, and an additional output feature which consists of the execu-

tion of the two code fragments and the comparison of their outputs using some semantic textual

similarity technique.

4. Empirical Evaluation

In previous work [18], we conducted a state-of-the-art study including unsupervised and

supervised strategies. We now proceed to extend the results shown above.

4.1. Experimental Setup

The models have undergone a previous fine-tuning phase, beginning with the loading and

randomly splitting a dataset of code fragments into training, validation, and test sets. The

approach’s core involves training the model to discern source code clone pairs, guided by a trainer

configured with specific arguments such as epoch count, batch size, and learning rate adjustments.

Finally, performance metrics have been calculated to evaluate the model’s effectiveness as the

average value of a given number of executions. In our study, we have considered up to ten

independent executions.

4.2. Dataset

We use the IR-Plag dataset1 [10], designed for benchmarking source code similarity techniques

in detecting academic plagiarism. The dataset includes 467 code files, with 355 (77%) labeled as

plagiarized. It contains 59,201 tokens with 540 unique tokens, offering lexical and compositional

diversity. File sizes range from 40 to 286 tokens, averaging 126 tokens per file, making it suitable

for studying source code clones.

4.3. Evaluation Criteria

Although accuracy is commonly calculated in studies like this, it is discouraged for unbal-

anced datasets because it can be misleading; predicting the most frequent class can result in

deceptively high accuracy. Therefore, we have chosen to use precision and recall, as this method

is more appropriate to separately evaluate false positives (precision) and false negatives (recall).

This approach also penalizes models for missing positive instances and making incorrect positive

predictions. The f-measure, i.e., the harmonic mean of precision and recall, is then used to rank

the effectiveness of different techniques.

1https://github.com/oscarkarnalim/sourcecodeplagiarismdataset

5

https://github.com/oscarkarnalim/sourcecodeplagiarismdataset


4.4. Results

Table 1 presents a comparative evaluation of various approaches applied to the IR-Plag

dataset. The approaches evaluated include CodeBERT [4], Output Analysis [18], Boosting

(XGBoost) [17], Bagging (Random Forest) [17], GraphCodeBERT [6], and our novel variant

of GraphCodeBERT. Among the approaches, the novel GraphCodeBERT variant achieved the

best performance, with the highest scores in both precision (0.98) and recall (1.00), resulting in

an f-measure of 0.99.

Approach precision recall f-measure

CodeBERT [4] 0.72 1.00 0.84

Output Analysis [18] 0.88 0.93 0.90

Boosting (XGBoost) [17] 0.88 0.99 0.93

Bagging (Random Forest) [17] 0.95 0.97 0.96

GraphCodeBERT [6] 0.98 0.95 0.96

Our GraphCodeBERT variant 0.98 1.00 0.99

Table 1: Performance comparison of state-of-the-art techniques on the IR-Plag dataset, evaluated using precision,
recall, and f-measure. Our GraphCodeBERT variant outperforms other methods with the highest f-measure of
0.99

4.5. Discussion

Our experimental results reveal several key findings that demonstrate the effectiveness of our

approach. These key findings are:

� Firstly, adding an output feature layer has improved the model’s performance. Combin-

ing the pooled output with the processed output features has enriched the source code

representation, leading to better classification results.

� Secondly, the GraphCodeBERT model has demonstrated a strong capability in understand-

ing and representing source code fragments. Its architecture has effectively learned source

code similarity, and our custom extension has further improved this capability.

� Lastly, our training and evaluation processes have indicated that the model generalized well

to unseen data, achieving high precision, recall, and f-measure scores. This suggests that

our approach could be effectively applied to various software engineering tasks that require

source code similarity detection to improve the reliability of these applications.

Our results suggest that our approach could improve software maintenance and reduce tech-

nical debt. Integrating the additional output feature layer has led to performance improvements,

primarily due to the strengthened code understanding capabilities of GraphCodeBERT through

our custom extension.

6



5. Conclusion

In this work, we have extended the GraphCodeBERT model by integrating additional output

features to improve classification performance in code similarity detection. Our idea has been

to combine transformer-based models with additional features, providing a promising direction

for addressing the limitations of earlier methods. Our extended GraphCodeBERT model has

significantly improved the process of identifying and classifying similar source code fragments.

Adding an extra output feature layer has combined information from the pooled and processed

outputs, resulting in a more detailed representation of the source code. This improvement has

increased the model’s performance. Our experimental results consistently show that our approach

has outperformed the rest of the models regarding precision, recall, and f-measure.

Despite these positive results, future work could be focused on further improvements, such

as experimenting with diverse types of additional features, using advanced code augmentation

techniques, and applying the model to larger and more diverse datasets. Additionally, integrat-

ing the model into real-world applications and conducting user studies should provide valuable

information for further refinement and optimization.

Acknowledgments

The research reported in this paper has been funded by the Federal Ministry for Climate

Action, Environment, Energy, Mobility, Innovation, and Technology (BMK), the Federal Ministry

for Digital and Economic Affairs (BMDW), and the State of Upper Austria in the frame of SCCH,

a center in the COMET - Competence Centers for Excellent Technologies Programme.

References

[1] Ain, Q. U., Butt, W. H., Anwar, M. W., Azam, F., & Maqbool, B. (2019). A systematic

review on code clone detection. IEEE access, 7 , 86121–86144.

[2] Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). code2vec: Learning distributed

representations of code. Proceedings of the ACM on Programming Languages, 3 , 1–29.

[3] Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: pre-training of deep bidi-

rectional transformers for language understanding. In J. Burstein, C. Doran, & T. Solorio

(Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,

Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers) (pp. 4171–4186).

Association for Computational Linguistics.

7



[4] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,

Jiang, D., & Zhou, M. (2020). Codebert: A pre-trained model for programming and natural

languages. In T. Cohn, Y. He, & Y. Liu (Eds.), Findings of the Association for Compu-

tational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020 (pp. 1536–1547).

Association for Computational Linguistics volume EMNLP 2020 of Findings of ACL.

[5] Gabel, M., Jiang, L., & Su, Z. (2008). Scalable detection of semantic clones. In Proceedings

of the 30th international conference on Software engineering (pp. 321–330).

[6] Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svyatkovskiy, A.,

Fu, S., Tufano, M., Deng, S. K., Clement, C. B., Drain, D., Sundaresan, N., Yin, J., Jiang,

D., & Zhou, M. (2021). Graphcodebert: Pre-training code representations with data flow.

In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,

Austria, May 3-7, 2021 . OpenReview.net.

[7] Haque, S., Eberhart, Z., Bansal, A., & McMillan, C. (2022). Semantic similarity metrics for

evaluating source code summarization. In Proceedings of the 30th IEEE/ACM International

Conference on Program Comprehension (pp. 36–47).

[8] Hartanto, A. D., Syaputra, A., & Pristyanto, Y. (2019). Best parameter selection of rabin-

karp algorithm in detecting document similarity. In 2019 International Conference on In-

formation and Communications Technology (ICOIACT) (pp. 457–461). IEEE.

[9] Karmakar, A., & Robbes, R. (2021). What do pre-trained code models know about code? In

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

(pp. 1332–1336). IEEE.

[10] Karnalim, O., Budi, S., Toba, H., & Joy, M. (2019). Source code plagiarism detection in

academia with information retrieval: Dataset and the observation. Informatics in Education,

18 , 321–344.

[11] Karnalim, O., & Simon (2020). Syntax trees and information retrieval to improve code

similarity detection. In Proceedings of the Twenty-Second Australasian Computing Education

Conference (pp. 48–55).

[12] Karnalim, O. et al. (2021). Explanation in code similarity investigation. IEEE Access, 9 ,

59935–59948.

[13] Martinez-Gil, J. (2014). An overview of textual semantic similarity measures based on web

intelligence. Artif. Intell. Rev., 42 , 935–943.

[14] Martinez-Gil, J. (2019). Semantic similarity aggregators for very short textual expressions:

a case study on landmarks and points of interest. J. Intell. Inf. Syst., 53 , 361–380.

8



[15] Martinez-Gil, J. (2022). A comprehensive review of stacking methods for semantic similarity

measurement. Machine Learning with Applications, 10 , 100423.

[16] Martinez-Gil, J. (2023). A comparative study of ensemble techniques based on genetic

programming: A case study in semantic similarity assessment. Int. J. Softw. Eng. Knowl.

Eng., 33 , 289–312.

[17] Martinez-Gil, J. (2024). Advanced detection of source code clones via an ensemble of unsu-

pervised similarity measures. CoRR, abs/2405.02095 . arXiv:2405.02095.

[18] Martinez-Gil, J. (2024). Source code clone detection using unsupervised similarity mea-

sures. In P. Bludau, R. Ramler, D. Winkler, & J. Bergsmann (Eds.), Software Quality as a

Foundation for Security - 16th International Conference on Software Quality, SWQD 2024,

Vienna, Austria, April 23-25, 2024, Proceedings (pp. 21–37). Springer volume 505 of Lecture

Notes in Business Information Processing .

[19] Martinez-Gil, J., & Aldana-Montes, J. F. (2013). Semantic similarity measurement using

historical google search patterns. Inf. Syst. Frontiers, 15 , 399–410.

[20] Martinez-Gil, J., & Chaves-Gonzalez, J. M. (2019). Automatic design of semantic similarity

controllers based on fuzzy logics. Expert Syst. Appl., 131 , 45–59.

[21] Martinez-Gil, J., & Chaves-Gonzalez, J. M. (2021). Semantic similarity controllers: On the

trade-off between accuracy and interpretability. Knowl. Based Syst., 234 , 107609.

[22] Novak, M., Joy, M., & Kermek, D. (2019). Source-code similarity detection and detection

tools used in academia: a systematic review. ACM Transactions on Computing Education

(TOCE), 19 , 1–37.

[23] Roy, C. K., Cordy, J. R., & Koschke, R. (2009). Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach. Science of computer programming ,

74 , 470–495.

[24] Saini, N., Singh, S. et al. (2018). Code clones: Detection and management. Procedia

computer science, 132 , 718–727.

[25] Wang, W., Li, G., Ma, B., Xia, X., & Jin, Z. (2020). Detecting code clones with graph

neural network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International

Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 261–271).

IEEE.

[26] Wei, H., & Li, M. (2017). Supervised deep features for software functional clone detection

by exploiting lexical and syntactical information in source code. In IJCAI (pp. 3034–3040).

9

http://arxiv.org/abs/2405.02095


[27] White, M., Tufano, M., Vendome, C., & Poshyvanyk, D. (2016). Deep learning code frag-

ments for code clone detection. In Proceedings of the 31st IEEE/ACM international confer-

ence on automated software engineering (pp. 87–98).

[28] Yu, H., Lam, W., Chen, L., Li, G., Xie, T., & Wang, Q. (2019). Neural detection of semantic

code clones via tree-based convolution. In 2019 IEEE/ACM 27th International Conference

on Program Comprehension (ICPC) (pp. 70–80). IEEE.

10


	Introduction
	State-of-the-art
	Historical Overview
	Contribution Over the State-of-the-art

	GraphCodeBERT and Additional Feature Integration
	Problem Statement
	Training Objective
	Extension of the Model Architecture

	Empirical Evaluation
	Experimental Setup
	Dataset
	Evaluation Criteria
	Results
	Discussion

	Conclusion

