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Assessing the degree of similarity of code fragments is crucial for ensuring software qual-
ity, but it remains challenging due to the need to capture the deeper semantic aspects of
code. Traditional syntactic methods often fail to identify these connections. Recent ad-
vancements have addressed this challenge, though they frequently sacrifice interpretabil-
ity. To improve this, we present an approach aiming to augment the transparency of
the similarity assessment by using GraphCodeBERT, which enables the identification
of semantic relationships between code fragments. This approach identifies similar code
fragments and clarifies the reasons behind that identification, helping developers better
understand and trust the results. The source code for our implementation is available at
https://www.github.com/jorge-martinez-gil/graphcodebert-interpretability.

Keywords: Software Engineering, GraphCodeBERT, Semantic Code, Source Code Sim-
ilarity

1. Introduction

The growing complexity of software systems requires appropriate methods for an-
alyzing code, particularly those that can recognize and compare code on a deeper
level beyond syntax [27]. Traditional strategies tend to focus on surface-level simi-
larity, which can result in missing important aspects, especially in cases where code
is written using different styles. This means that these methods may yield incom-
plete or misleading results, impacting the effectiveness of code maintenance and
optimization efforts within increasingly complex projects.

To face these problems, transformer models like GraphCodeBERT [11] have
undergone pre-training on extensive datasets of source code. These models pro-
vide a promising solution for a more effective exploration of the code. They use
a transformer architecture to analyze relationships and meaning. The idea behind
learning from diverse examples across various programming languages allows Graph-
CodeBERT to identify the intent behind different code fragments, even when those
fragments appear different on the surface. Its strong performance have made Graph-
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CodeBERT a popular choice for code similarity tasks [11].

However, the complexity of these models poses a challenge, as their vast archi-
tectures make them difficult for humans to interpret [21]. It is, therefore, crucial to
explore methods that improve our understanding of these models [5]. This work faces
the interpretability challenge by introducing a GraphCodeBERT-driven framework
that visualizes the model’s inner workings while determining the similarity between
code fragments. The key contributions of this research include:

e We introduce a new approach using GraphCodeBERT to visualize the se-
mantic similarity between two code fragments. This approach breaks down
the code into tokens and embeds them into high-dimensional vectors to
assess the significance of each token relative to the others.

e The approach produces visual representations that illustrate how closely the
tokens in two code fragments are related in terms of meaning. Our strat-
egy proves particularly useful in assessing code quality, detecting potential
plagiarism, or identifying opportunities for refactoring.

e Furthermore, this method has potential applications across various aspects
of software engineering. For example, it can suggest code improvements or
improve automated code generation systems. We aim to demonstrate how
GraphCodeBERT’s capabilities can contribute to developing more main-
tainable software systems.

The rest of our work guides the reader through the research: Section 2 exam-
ines existing methods and places this work within the context of related research.
Section 3 outlines the approach, from tokenization to creating similarity matrices.
Section 4 presents a use case for applying the proposed strategy to classical sorting
algorithms. Section 5 discusses the strengths, limitations, and potential future lines
of research. The conclusion summarizes the key contributions and the importance
of the findings.

2. Literature Survey

Researchers have made significant progress in code representation, especially with
the introduction of pre-trained models for programming languages. These models,
primarily based on transformer architectures, achieve strong performance in tasks
such as code completion [4] and similarity detection [14]. This section reviews the
current approaches relevant to our work.

2.1. Pre-trained Models for Code Understanding

Pre-trained models have changed the field of automatic text processing. The idea
is to use large-scale unsupervised training on vast amounts of textual data [7].
Building on these advances, researchers applied similar techniques to programming
languages |10].
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CodeBERT [10], one of the seminal models in this area, uses a bi-directional
transformer pre-trained on large datasets of source code. It is designed to learn
both syntactic and semantic aspects of code and has been fine-tuned for tasks such
as code repair [19], clone detection [2], or code plagiarism assessment [3].

An extension of CodeBERT, GraphCodeBERT [11], includes additional struc-
tural information. The idea behind incorporating data flow graphs is to allow for
capturing deeper aspects, improving its performance for tasks requiring a detailed
understanding of code behavior. Models of this kind have many applications, for
example, identification of code vulnerabilities [26].

2.2. Tokenization and Embedding Techniques

Tokenization is a critical step in preparing code for machine learning models. Tra-
ditional tokenization methods often struggle with programming languages due to
their unique syntax and use of various symbols. In recent time, novel models us-
ing specialized tokenization techniques have been developed. These models allow to
handle a range of programming languages [12].

After tokenization, each token t¢; is mapped to a high-dimensional vector em-
bedding v; € R?, where d is the dimensionality of the embedding space. These
embeddings encode valuable information about each token [24]. In GraphCode-
BERT, including data flow information enriches these embeddings, allowing for a
richer representation that captures deeper aspects of the code [11].

2.3. Code Similarity Detection

Code similarity detection is essential in tasks like clone identification (28] and au-
tomated code review [15]. Earlier methods relied on syntactic matching or basic
structural analysis, which often missed relationships between code fragments [18].

More recent methods use pre-trained models to measure code similarity through
learned embeddings. These models, such as GraphCodeBERT, compute similarity
scores between code fragments using embeddings, capturing more subtle similarities
than syntax-based approaches can [16].

Advanced techniques also use attention mechanisms to focus on the most rel-
evant parts of the code during similarity computation [17]. This helps the models
assign importance to tokens based on their role in the structure, improving the
accuracy of similarity assessments.

2.4. Visualization Techniques for Code Comparison

Visualization is an effective way to interpret the results of code similarity analysis
[23]. Current methods often present similarity matrices or heatmaps, where the
degree of similarity between tokens from different code fragments is represented
with color gradients. This offers an intuitive way to explore relationships between
code segments and allows for detailed analysis of similarity.
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GraphCodeBERT's integration of data flow graphs would improve the clarity of
these visualizations. It would allow users to see which tokens are similar and how
data moves through the code. This is useful for tasks where understanding the code
elements is crucial.

2.5. Contribution over the State-of-the-Art

Earlier approaches have faced the interpretability challenge using less advanced
models |1]. This work proposes a method that improves transparency in code sim-
ilarity by utilizing GraphCodeBERT to identify relationships between code frag-
ments. This method can explain why two code pieces are similar by revealing their
connections. These explanations allow developers to understand the matching pro-
cess better and gain more confidence in the results.

3. Methodology

Our approach uses the pre-trained GraphCodeBERT transformer model to cap-
ture deep semantic relationships within code, providing an improved understand-
ing beyond mere syntactical analysis [22]. The methodology is divided into several
steps: starting with the use of the pre-trained GraphCodeBERT model, we proceed
through the processes of tokenization, input representation, and the application of
an attention mechanism to determine the relative significance of each token within
the code. Finally, we describe the result generation, which is visualized in diverse
ways, offering a graphical representation of the connections between tokens in dif-
ferent code fragments.

3.1. Pre-trained GraphCodeBERT Model

GraphCodeBERT has been fine-tuned on large-scale code datasets across multiple
programming languages. This model captures complex patterns in code, making it
ideal for tasks needing deep code understanding. Mathematically, the model can be
expressed as a function F : T — RY, where T = {t1,ta,...,t,} is the input tokens,
and V = {vy,va,...,v,} is the corresponding vector embeddings, such as:

V:f(T):{Vl,V27...,Vn}7 ViERd (1)

The model architecture, shown in Figure [T} consists of multiple components
working in sequence. Source code and its data flow are the starting inputs, which
undergo tokenization to break down the code into manageable parts. These tokens
are combined with data flow embeddings, capturing additional relationships within
the code. A transformer encoder then processes these embeddings to generate output
vectors suitable for clone detection tasks.

Tokenization splits the source code into meaningful units called tokens. These
tokens are then transformed into high-dimensional vector embeddings that encode
semantic information [9].
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Fig. 1: GraphCodeBERT architecture combines source code with data flow informa-
tion, tokenizes the input, and uses a Transformer encoder to generate embeddings
for code-related tasks.

The process of tokenizing a given code fragment c is performed by splitting it
into a sequence of tokens T = {t,ta,...,t,}. The tokenization can be formalized
as:

T = Tokenize(c) = {t; | t; € Tokens(c)} (2)

where each token t; is identified based on alphanumeric characters that are
crucial to the code’s syntax and structure. The output sequence T serves as the
input to the embedding layer.

Each token ¢; is mapped to a vector embedding v; using F that represents a
function that maps each token t; to its corresponding vector embedding v; through
the pre-trained GraphCodeBERT model:

vV, = ./_‘.(tz), v; € Rd (3)

The input sequence V is then represented as:

V={vi,va,...,Vn} (4)

The attention mechanism in GraphCodeBERT calculates attention weights for
each token. These weights indicate the relevance of one token to others in the
sequence. This helps the model focus on the most relevant tokens when assessing
the similarity between code fragments. Let Q and K represent the query and key
matrices, respectively, derived from the input embeddings:

Q=WyV, K=WgV, V=WyV (5)

where Wo, Wg, Wy € R?*4 are learnable weight matrices. The scaled dot-
product attention is computed as:

A = softmax (C\)/IC%F) A% (6)
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where dy, is the dimensionality of the key vectors. The resulting attention matrix
A € R™ " represents the weight assigned to each token pair, indicating the influence
of token t; on token ;.

Given two code fragments ¢ and co, Wlth thelr respective token sequences 17 =
{tgl),tgl), . tm)} and Tp = {t; (2 .2 S } and their corresponding attention
matrices A; and As, the computatlon of the similarity matrix S should be:

S=AA] ¢ RmXm (7)

The element S;; in the similarity matrix represents the semantic similarity be-
tween token tgl) from 77 and token t§2) from T5. In order to capture higher-order
relationships, the similarity matrix can be refined through multiple attention heads:

AT 8)

HME

where H is the number of attention heads.

3.2. Dimensionality Reduction and Visualization

In order to visualize the high-dimensional embeddings generated by GraphCode-
BERT, we use Principal Component Analysis (PCA) [20], t-distributed Stochastic
Neighbor Embedding (t-SNE) [8], and Uniform Manifold Approximation and Pro-
jection (UMAP) [8].

PCA is intended to reduce the dimensionality while preserving the data struc-
ture. In fact, it can identify the principal components that capture the maximum
variance in the data. PCA is defined as:

Z=VWpca, ZecR™, Wpey e RP (9)

where p < d is the reduced dimensionality, V represents the original data matrix
with n samples and d features, W pc 4 contains the top p principal component
vectors, and Z is the transformed data in the lower p-dimensional space.

t-SNE focuses on preserving the local structure of the data, making it well-
suited for visualizing clusters. t-SNE maps high-dimensional points v; to lower-
dimensional points y; € R? by minimizing the Kullback-Leibler divergence between
high-dimensional and low-dimensional points:

L(P Q)= Z‘Pl] 10g Q
i) g

where P;; and @);; are the joint probabilities of pairs of points in the high-

(10)

dimensional and low-dimensional spaces, respectively. t-SNE is effective for visual-
izing small-scale patterns, but it can be computationally intensive.
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UMAP is a more recent technique that combines the strengths of both PCA and
t-SNE while addressing some limitations. UMAP aims to preserve the data’s local
and global structures. To do that, it builds a high-dimensional graph representation
of the data, which optimizes for a low-dimensional layout.

The idea is to build a weighted graph G = (V, E) where V are the vertices
representing points and E are the edges connecting these points. The edge weights
are determined by pairwise similarities between the points and are calculated as
follows:

d(vi, v)) —pi) (11)

W;; = €Xp | —
g;
where:

o d(v;,v;) is the distance between points v; and v; in the original high-
dimensional space.

e p; is the distance to the nearest neighbor of v;.

e o, is a scaling factor controlling the distance distribution’s spread.

The UMAP method then optimizes the low-dimensional embedding Y by min-
imizing a cross-entropy loss between both the high-dimensional and the low-
dimensional representation such as:

Wy 4 1-— Wy 4
argmin wi; log (J> + (1 — w;4) log (j) (12)
v (§ s \dist(yi, y5) ’ 1 — dist (i, y;)

where:

o dist(y;,y;) is the distance between the low-dimensional points y; and y; in
the embedding.
e Y represents the coordinates of all points in the low-dimensional space.

In order to make the analysis more accessible to developers, we incorporate a
range of visualization techniques. These methods improve the clarity of relation-
ships between fragments and allow us to explore the data more deeply [25]. In
addition, we use saliency maps to interpret the importance of individual tokens in
the embeddings. Saliency maps help identify which tokens contribute the most to
the similarity to generate a visual representation that shows the influential tokens
[13].

Let the similarity score between two code fragments be denoted as sim(Fq, Fs).
The saliency map for a token embedding egl) from the first fragment is computed
as the gradient of the similarity score concerning that embedding:

asim(Fl, Fg)
8e§1)

saliency(egl))

| ®
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The capability to visualize these saliency maps alongside the code fragments
aims to help developers better understand which parts of the code are driving the
assessment of the similarity.

3.3. Similarity Computation

In order to quantify the similarity between two fragments, their respective em-
beddings should be compared using cosine similarity. Let egl) and e§-2) denote the
embeddings of the i-th token in the first fragment and the j-th token in the second
fragment, respectively. The similarity between these embeddings can be calculated
as follows:

o o
COSine,sim(ez(-l), e§2)) = m (14)
e e
? J

)

%

. . . . 2 .
The resulting matrix S, where S;; = cosine_sim(e; ’, e )), serves as the basis

(
J
for further analysis.

3.4. Interpretation Strategy

Our strategy for augmenting interpretability involves multiple visualization methods
to process the embeddings and their similarities:

e PCA and t-SNE are helpful to reduce the dimensionality of the embeddings.
This allows for visual inspection of the embedding space. These methods
reveal clusters in the data.

e UMAP is used to visualize high-dimensional data. This method is intended
to preserve more of the global structure of the data compared to t-SNE and
can often produce more meaningful clusters.

e Saliency maps are used to visualize the contribution of individual features
in the embedding to the output. The idea is to identify the parts of the
input that influence the model’s predictions most.

Each method adds value to understanding how embeddings represent and orga-
nize information. The idea is to understand how embeddings represent and organize
information differently. This approach helps analyze patterns and the specific fea-
tures driving model behavior.

4. Use Case

We introduce a method to improve understanding of how semantic similarity be-
tween classical sorting algorithms can be evaluated. Sorting algorithms are funda-
mental to computer science and the foundation for many computer-related systems.
We have chosen to work with sorting algorithms due to their fundamental nature,
well-documented structure, and widespread use in benchmarks [6].
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We focus on five well-known sorting algorithms: Bubble Sort swaps adjacent
elements to move the largest to the end (Listing 1). Selection Sort finds the smallest
unsorted element and swaps it with the first unsorted position (Listing 2). Insertion
Sort places each element into its correct position in the sorted part (Listing 3).
Merge Sort splits, sorts, and merges sublists recursively (Listing 4). Quick Sort
partitions around a pivot and sorts recursively (Listing 5). The goal is to improve
the analysis of code representations to show details that may not be immediately
obvious through standard methods.

It is necessary to note that GraphCodeBERT may sometimes produce results
that differ from expectations due to issues like tokenization errors, gaps in train-
ing data, or difficulties handling complex code structures. These issues can be ad-
dressed by expanding training datasets to include diverse programming languages
and styles, improving tokenization processes to align more closely with program-
ming syntax, and adding post-processing steps to ensure correctness. Regular testing
across varied cases helps maintain reliability, and methods like TF-IDF with Cosine
Similarity or AST-based Tree Kernels can serve as useful benchmarks for evaluating
these improvements.
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def bubble_sort(arr):
for i in range(len(arr)):
for j in range (0, n-i-1):
if arr([j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr([j]

Listing 1: An implementation of the Bubble Sort algorithm as a simple comparison-
based sorting algorithm that repeatedly steps through the list.

def selection_sort(arr):
for i in range(len(arr)):
min_idx = i
for j in range(i+1l, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[il]

Listing 2: An implementation of the Selection Sort algorithm that repeatedly selects
the smallest element from the unsorted list portion.

def merge_sort (arr):
if len(arr) > 1:
mid = len(arr) // 2
L = arr[:mid]
R arr [mid:]
merge_sort (L)
merge_sort (R)

i=j=%k=0
while i < len(L) and j < len(R):
if L[i] < R[j]:
arr [k] = L[i]

i 4= 1
else:
arr [k] = R[j]
P
k += 1

while i < len(L):
arr [k] = L[il
i +=1; k += 1

while j < len(R):
arr [k] = R[j]
jo+= 1; k += 1

Listing 3: An implementation of the Merge Sort algorithm that recursively divides
the array into two halves sorts each half and then merges them.
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def partition(arr, low, high):
pivot = arr[high]
i = low - 1

for j in range(low, high):
if arr[j] <= pivot:
i=1i+1
arr[i], arr([j] = arr([j], arr[i]

arr[i + 1], arr[high] = arr[high], arr[i + 1]
return i + 1

def quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)

quick_sort (arr, low, pi - 1)
quick_sort (arr, pi + 1, high)

Listing 4: An implementation of the Quick Sort algorithm that selects a pivot
partitions the array around the pivot and recursively sorts the subarrays.

def insertion_sort(arr):
for i in range (1, len(arr)):

key = arr[i]

j o= i-1

while j >=0 and key < arr[jl:
arr[j + 1] = arr([j]
j =1

arr[j + 1] = key

Listing 5: An implementation of the Insertion Sort algorithm that builds the sorted
array one element at a time by repeatedly inserting elements.

Each algorithm was implemented in Python and represented as a code string.
These code strings were tokenized and processed through GraphCodeBERT to gen-
erate vector embeddings, which encapsulate the structural and semantic properties
of the code. The resulting similarities were visualized in a heatmap, as shown in
Figure

The heatmap reveals that algorithms sharing similar structural patterns or op-
erational steps, such as Insertion Sort and Bubble Sort, exhibit higher similarity
scores. At the same time, algorithms with fundamentally different approaches, like
Quick Sort and Bubble Sort, display lower similarity scores. This approach provides
interesting insights into different sorting algorithms’ inherent relationships. Our goal
is that our approach can help us understand these results in greater depth.
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Similarity between Sorting Algorithms using GraphCodeBERT
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Fig. 2: Visualization of the similarity relationships among various classical sort-
ing algorithms using GraphCodeBERT. This heatmap shows how similar sorting
algorithms are, based on their structure and behavior, using GraphCodeBERT.
Algorithms like Bubble Sort and Insertion Sort, which follow similar step-by-step
processes, show higher similarity scores.

4.1. Pairwise Comparisons of Sorting Algorithms

We present pairwise comparisons of the sorting algorithms by projecting their token
embeddings into a two-dimensional space using PCA, t-SNE, and UMAP, respec-
tively. Our strategy helps to visualize the relationships between the embeddings in
a simplified form. Each image provided shows the distribution of token embeddings
for a specific pair of sorting algorithms, with different colors assigned to each al-
gorithm for a clear distinction. These visualizations allow us to observe how the
embeddings of different algorithms spread out in the 2D space.

Figures [3] and [4] use PCA to compare sorting algorithms through their token
embeddings. Similarly, Figures [5] and [6] apply t-SNE, focusing on the differences
and similarities in representation. Figures[7] and [§]rely on UMAP to map structural
patterns among these embeddings, providing an alternative view of the relation-
ships.
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Fig. 6: Pairwise comparisons of classical sorting algorithms using t-SNE, showing
the token embeddings in a 2D space (Part 2).
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4.2. Saliency Maps for Sorting Algorithms

Saliency maps provide a visual explanation of which parts of the input contributed
most to the model’s decisions, offering hints into how the model interprets the
similarities between the algorithms. These maps allow us to observe which tokens
the model focuses on when distinguishing between the sorting algorithms. Figure [J]
illustrates the saliency maps for these comparisons, focusing on the critical areas of
attention within the token embeddings.

(a) Bubble Sort vs Selection Sort (b) Bubble Sort vs Insertion Sort
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Fig. 9: Saliency maps for pairwise comparisons of different sorting algorithms.
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The results show that this method holds considerable potential for various ap-
plications. For example, automated code reviews help reviewers quickly identify
redundancies, reducing maintenance costs. In refactoring, this method can assist
developers in determining code segments that can be optimized. Additionally, in
educational settings, this approach can aid in teaching by offering a deeper knowl-
edge of the underlying principles of algorithms.

4.3. Ablation Study

To examine the role of various components in our approach, we have conducted an
ablation study comparing configurations for analyzing the embeddings of the sorting
algorithms. This analysis has included comparing token embeddings representing
individual tokens in the code with pooled text embeddings, reducing the entire code
snippet into a single vector. The study can be found in our GitHub repositoryf}
but some interesting facts are that token embeddings displayed distinct clusters
corresponding to each algorithm. In contrast, pooled text embeddings showed a
strong resemblance between Bubble Sort and Selection Sort due to their shared
processing style, while Quick Sort and Merge Sort were more distinct owing to their
different strategy.

5. Discussion

We have seen that our strategy can improve interpretability by presenting differ-
ent approaches to visualize similarities between code fragments through the use
of GraphCodeBERT. We have seen that this approach improves over traditional
comparison approaches, providing deeper insights into the functional similarities
between those fragments.

However, several areas deserve further investigation. One key area is the
method’s scalability when applied to larger projects. While our initial experiments
focused on relatively small examples, real-world software projects involve thousands
of lines of code. It could be interesting to assess how well the model performs under
such conditions in terms of the quality of the generated outputs.

Another important aspect is the applicability across different programming lan-
guages. Although our experiments produced promising results in single-language
comparisons, extending the evaluation to a broader range of languages would offer
a more complete assessment of the method’s usefulness.

Future work may also explore integrating this approach with other code analy-
sis methods. For instance, combining our method with static analysis or code met-
rics tools could improve code maintainability. Additionally, incorporating feedback
mechanisms where developers can refine the outputs could improve the usability of
the results.

https://www.github.com/jorge-martinez-gil/graphcodebert-interpretability
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6. Conclusion

Our research has introduced a novel strategy for increasing the interpretability ca-
pabilities of the similarity between code fragments using GraphCodeBERT. The
process is formalized through mathematical expressions, presenting a framework
that captures and displays the relationships in an interpretable visual format. Our
experimental results demonstrate the method’s effectiveness in explaining similari-
ties between code fragments.

This approach has implications for improving code understanding, guarantee-
ing code quality, and improving software development processes. Our method con-
tributes to developing more maintainable software systems by simplifying tasks such
as automated code review, refactoring, and plagiarism detection. Future research
will aim to expand the applicability of this method, potentially integrating it into
broader software engineering tools.

Additional future directions include the development of more language-agnostic
models and improvements in the integration of structural information. Furthermore,
exploring the combination of machine learning-based approaches with traditional
program analysis techniques could lead to more accurate models. However, chal-
lenges remain in generalizing across different programming languages and coding
styles.
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