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Assessing the degree of similarity of code fragments is crucial for ensuring software qual-

ity, but it remains challenging due to the need to capture the deeper semantic aspects of

code. Traditional syntactic methods often fail to identify these connections. Recent ad-
vancements have addressed this challenge, though they frequently sacrifice interpretabil-

ity. To improve this, we present an approach aiming to augment the transparency of
the similarity assessment by using GraphCodeBERT, which enables the identification

of semantic relationships between code fragments. This approach identifies similar code

fragments and clarifies the reasons behind that identification, helping developers better
understand and trust the results. The source code for our implementation is available at

https://www.github.com/jorge-martinez-gil/graphcodebert-interpretability.
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1. Introduction

The growing complexity of software systems requires appropriate methods for an-

alyzing code, particularly those that can recognize and compare code on a deeper

level beyond syntax [27]. Traditional strategies tend to focus on surface-level simi-

larity, which can result in missing important aspects, especially in cases where code

is written using different styles. This means that these methods may yield incom-

plete or misleading results, impacting the effectiveness of code maintenance and

optimization efforts within increasingly complex projects.

To face these problems, transformer models like GraphCodeBERT [11] have

undergone pre-training on extensive datasets of source code. These models pro-

vide a promising solution for a more effective exploration of the code. They use

a transformer architecture to analyze relationships and meaning. The idea behind

learning from diverse examples across various programming languages allows Graph-

CodeBERT to identify the intent behind different code fragments, even when those

fragments appear different on the surface. Its strong performance have made Graph-

1

jorge.martinez-gil@scch.at
https://www.github.com/jorge-martinez-gil/graphcodebert-interpretability


February 26, 2025 13:52 WSPC/INSTRUCTION FILE ws-ijseke

2 Jorge Martinez-Gil

CodeBERT a popular choice for code similarity tasks [11].

However, the complexity of these models poses a challenge, as their vast archi-

tectures make them difficult for humans to interpret [21]. It is, therefore, crucial to

explore methods that improve our understanding of these models [5]. This work faces

the interpretability challenge by introducing a GraphCodeBERT-driven framework

that visualizes the model’s inner workings while determining the similarity between

code fragments. The key contributions of this research include:

• We introduce a new approach using GraphCodeBERT to visualize the se-

mantic similarity between two code fragments. This approach breaks down

the code into tokens and embeds them into high-dimensional vectors to

assess the significance of each token relative to the others.

• The approach produces visual representations that illustrate how closely the

tokens in two code fragments are related in terms of meaning. Our strat-

egy proves particularly useful in assessing code quality, detecting potential

plagiarism, or identifying opportunities for refactoring.

• Furthermore, this method has potential applications across various aspects

of software engineering. For example, it can suggest code improvements or

improve automated code generation systems. We aim to demonstrate how

GraphCodeBERT’s capabilities can contribute to developing more main-

tainable software systems.

The rest of our work guides the reader through the research: Section 2 exam-

ines existing methods and places this work within the context of related research.

Section 3 outlines the approach, from tokenization to creating similarity matrices.

Section 4 presents a use case for applying the proposed strategy to classical sorting

algorithms. Section 5 discusses the strengths, limitations, and potential future lines

of research. The conclusion summarizes the key contributions and the importance

of the findings.

2. Literature Survey

Researchers have made significant progress in code representation, especially with

the introduction of pre-trained models for programming languages. These models,

primarily based on transformer architectures, achieve strong performance in tasks

such as code completion [4] and similarity detection [14]. This section reviews the

current approaches relevant to our work.

2.1. Pre-trained Models for Code Understanding

Pre-trained models have changed the field of automatic text processing. The idea

is to use large-scale unsupervised training on vast amounts of textual data [7].

Building on these advances, researchers applied similar techniques to programming

languages [10].
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CodeBERT [10], one of the seminal models in this area, uses a bi-directional

transformer pre-trained on large datasets of source code. It is designed to learn

both syntactic and semantic aspects of code and has been fine-tuned for tasks such

as code repair [19], clone detection [2], or code plagiarism assessment [3].

An extension of CodeBERT, GraphCodeBERT [11], includes additional struc-

tural information. The idea behind incorporating data flow graphs is to allow for

capturing deeper aspects, improving its performance for tasks requiring a detailed

understanding of code behavior. Models of this kind have many applications, for

example, identification of code vulnerabilities [26].

2.2. Tokenization and Embedding Techniques

Tokenization is a critical step in preparing code for machine learning models. Tra-

ditional tokenization methods often struggle with programming languages due to

their unique syntax and use of various symbols. In recent time, novel models us-

ing specialized tokenization techniques have been developed. These models allow to

handle a range of programming languages [12].

After tokenization, each token ti is mapped to a high-dimensional vector em-

bedding vi ∈ Rd, where d is the dimensionality of the embedding space. These

embeddings encode valuable information about each token [24]. In GraphCode-

BERT, including data flow information enriches these embeddings, allowing for a

richer representation that captures deeper aspects of the code [11].

2.3. Code Similarity Detection

Code similarity detection is essential in tasks like clone identification [28] and au-

tomated code review [15]. Earlier methods relied on syntactic matching or basic

structural analysis, which often missed relationships between code fragments [18].

More recent methods use pre-trained models to measure code similarity through

learned embeddings. These models, such as GraphCodeBERT, compute similarity

scores between code fragments using embeddings, capturing more subtle similarities

than syntax-based approaches can [16].

Advanced techniques also use attention mechanisms to focus on the most rel-

evant parts of the code during similarity computation [17]. This helps the models

assign importance to tokens based on their role in the structure, improving the

accuracy of similarity assessments.

2.4. Visualization Techniques for Code Comparison

Visualization is an effective way to interpret the results of code similarity analysis

[23]. Current methods often present similarity matrices or heatmaps, where the

degree of similarity between tokens from different code fragments is represented

with color gradients. This offers an intuitive way to explore relationships between

code segments and allows for detailed analysis of similarity.
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GraphCodeBERT’s integration of data flow graphs would improve the clarity of

these visualizations. It would allow users to see which tokens are similar and how

data moves through the code. This is useful for tasks where understanding the code

elements is crucial.

2.5. Contribution over the State-of-the-Art

Earlier approaches have faced the interpretability challenge using less advanced

models [1]. This work proposes a method that improves transparency in code sim-

ilarity by utilizing GraphCodeBERT to identify relationships between code frag-

ments. This method can explain why two code pieces are similar by revealing their

connections. These explanations allow developers to understand the matching pro-

cess better and gain more confidence in the results.

3. Methodology

Our approach uses the pre-trained GraphCodeBERT transformer model to cap-

ture deep semantic relationships within code, providing an improved understand-

ing beyond mere syntactical analysis [22]. The methodology is divided into several

steps: starting with the use of the pre-trained GraphCodeBERT model, we proceed

through the processes of tokenization, input representation, and the application of

an attention mechanism to determine the relative significance of each token within

the code. Finally, we describe the result generation, which is visualized in diverse

ways, offering a graphical representation of the connections between tokens in dif-

ferent code fragments.

3.1. Pre-trained GraphCodeBERT Model

GraphCodeBERT has been fine-tuned on large-scale code datasets across multiple

programming languages. This model captures complex patterns in code, making it

ideal for tasks needing deep code understanding. Mathematically, the model can be

expressed as a function F : T → Rd, where T = {t1, t2, . . . , tn} is the input tokens,

and V = {v1,v2, . . . ,vn} is the corresponding vector embeddings, such as:

V = F(T ) = {v1,v2, . . . ,vn}, vi ∈ Rd (1)

The model architecture, shown in Figure 1, consists of multiple components

working in sequence. Source code and its data flow are the starting inputs, which

undergo tokenization to break down the code into manageable parts. These tokens

are combined with data flow embeddings, capturing additional relationships within

the code. A transformer encoder then processes these embeddings to generate output

vectors suitable for clone detection tasks.

Tokenization splits the source code into meaningful units called tokens. These

tokens are then transformed into high-dimensional vector embeddings that encode

semantic information [9].
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Fig. 1: GraphCodeBERT architecture combines source code with data flow informa-

tion, tokenizes the input, and uses a Transformer encoder to generate embeddings

for code-related tasks.

The process of tokenizing a given code fragment c is performed by splitting it

into a sequence of tokens T = {t1, t2, . . . , tn}. The tokenization can be formalized

as:

T = Tokenize(c) = {ti | ti ∈ Tokens(c)} (2)

where each token ti is identified based on alphanumeric characters that are

crucial to the code’s syntax and structure. The output sequence T serves as the

input to the embedding layer.

Each token ti is mapped to a vector embedding vi using F that represents a

function that maps each token ti to its corresponding vector embedding vi through

the pre-trained GraphCodeBERT model:

vi = F(ti), vi ∈ Rd (3)

The input sequence V is then represented as:

V = {v1,v2, . . . ,vn} (4)

The attention mechanism in GraphCodeBERT calculates attention weights for

each token. These weights indicate the relevance of one token to others in the

sequence. This helps the model focus on the most relevant tokens when assessing

the similarity between code fragments. Let Q and K represent the query and key

matrices, respectively, derived from the input embeddings:

Q = WQV, K = WKV, V = WV V (5)

where WQ,WK ,WV ∈ Rd×d are learnable weight matrices. The scaled dot-

product attention is computed as:

A = softmax

(
QK⊤
√
dk

)
V (6)
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where dk is the dimensionality of the key vectors. The resulting attention matrix

A ∈ Rn×n represents the weight assigned to each token pair, indicating the influence

of token tj on token ti.

Given two code fragments c1 and c2, with their respective token sequences T1 =

{t(1)1 , t
(1)
2 , . . . , t

(1)
n1 } and T2 = {t(2)1 , t

(2)
2 , . . . , t

(2)
n2 }, and their corresponding attention

matrices A1 and A2, the computation of the similarity matrix S should be:

S = A1A
⊤
2 ∈ Rn1×n2 (7)

The element Sij in the similarity matrix represents the semantic similarity be-

tween token t
(1)
i from T1 and token t

(2)
j from T2. In order to capture higher-order

relationships, the similarity matrix can be refined through multiple attention heads:

S =
1

H

H∑
h=1

A
(h)
1 A

(h)⊤
2 (8)

where H is the number of attention heads.

3.2. Dimensionality Reduction and Visualization

In order to visualize the high-dimensional embeddings generated by GraphCode-

BERT, we use Principal Component Analysis (PCA) [20], t-distributed Stochastic

Neighbor Embedding (t-SNE) [8], and Uniform Manifold Approximation and Pro-

jection (UMAP) [8].

PCA is intended to reduce the dimensionality while preserving the data struc-

ture. In fact, it can identify the principal components that capture the maximum

variance in the data. PCA is defined as:

Z = VWPCA, Z ∈ Rn×p, WPCA ∈ Rd×p (9)

where p < d is the reduced dimensionality, V represents the original data matrix

with n samples and d features, WPCA contains the top p principal component

vectors, and Z is the transformed data in the lower p-dimensional space.

t-SNE focuses on preserving the local structure of the data, making it well-

suited for visualizing clusters. t-SNE maps high-dimensional points vi to lower-

dimensional points yi ∈ Rq by minimizing the Kullback-Leibler divergence between

high-dimensional and low-dimensional points:

KL(P ∥ Q) =
∑
i ̸=j

Pij log
Pij

Qij
(10)

where Pij and Qij are the joint probabilities of pairs of points in the high-

dimensional and low-dimensional spaces, respectively. t-SNE is effective for visual-

izing small-scale patterns, but it can be computationally intensive.
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UMAP is a more recent technique that combines the strengths of both PCA and

t-SNE while addressing some limitations. UMAP aims to preserve the data’s local

and global structures. To do that, it builds a high-dimensional graph representation

of the data, which optimizes for a low-dimensional layout.

The idea is to build a weighted graph G = (V,E) where V are the vertices

representing points and E are the edges connecting these points. The edge weights

are determined by pairwise similarities between the points and are calculated as

follows:

wij = exp

(
−d(vi, vj)− ρi

σi

)
(11)

where:

• d(vi, vj) is the distance between points vi and vj in the original high-

dimensional space.

• ρi is the distance to the nearest neighbor of vi.

• σi is a scaling factor controlling the distance distribution’s spread.

The UMAP method then optimizes the low-dimensional embedding Y by min-

imizing a cross-entropy loss between both the high-dimensional and the low-

dimensional representation such as:

argminY
∑

(i,j)∈E

wij log

(
wij

dist(yi, yj)

)
+ (1− wij) log

(
1− wij

1− dist(yi, yj)

)
(12)

where:

• dist(yi, yj) is the distance between the low-dimensional points yi and yj in

the embedding.

• Y represents the coordinates of all points in the low-dimensional space.

In order to make the analysis more accessible to developers, we incorporate a

range of visualization techniques. These methods improve the clarity of relation-

ships between fragments and allow us to explore the data more deeply [25]. In

addition, we use saliency maps to interpret the importance of individual tokens in

the embeddings. Saliency maps help identify which tokens contribute the most to

the similarity to generate a visual representation that shows the influential tokens

[13].

Let the similarity score between two code fragments be denoted as sim(F1,F2).

The saliency map for a token embedding e
(1)
i from the first fragment is computed

as the gradient of the similarity score concerning that embedding:

saliency(e
(1)
i ) =

∥∥∥∥∥∂sim(F1,F2)

∂e
(1)
i

∥∥∥∥∥ (13)
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The capability to visualize these saliency maps alongside the code fragments

aims to help developers better understand which parts of the code are driving the

assessment of the similarity.

3.3. Similarity Computation

In order to quantify the similarity between two fragments, their respective em-

beddings should be compared using cosine similarity. Let e
(1)
i and e

(2)
j denote the

embeddings of the i-th token in the first fragment and the j-th token in the second

fragment, respectively. The similarity between these embeddings can be calculated

as follows:

cosine sim(e
(1)
i , e

(2)
j ) =

e
(1)
i · e(2)j

∥e(1)i ∥∥e(2)j ∥
(14)

The resulting matrix S, where Sij = cosine sim(e
(1)
i , e

(2)
j ), serves as the basis

for further analysis.

3.4. Interpretation Strategy

Our strategy for augmenting interpretability involves multiple visualization methods

to process the embeddings and their similarities:

• PCA and t-SNE are helpful to reduce the dimensionality of the embeddings.

This allows for visual inspection of the embedding space. These methods

reveal clusters in the data.

• UMAP is used to visualize high-dimensional data. This method is intended

to preserve more of the global structure of the data compared to t-SNE and

can often produce more meaningful clusters.

• Saliency maps are used to visualize the contribution of individual features

in the embedding to the output. The idea is to identify the parts of the

input that influence the model’s predictions most.

Each method adds value to understanding how embeddings represent and orga-

nize information. The idea is to understand how embeddings represent and organize

information differently. This approach helps analyze patterns and the specific fea-

tures driving model behavior.

4. Use Case

We introduce a method to improve understanding of how semantic similarity be-

tween classical sorting algorithms can be evaluated. Sorting algorithms are funda-

mental to computer science and the foundation for many computer-related systems.

We have chosen to work with sorting algorithms due to their fundamental nature,

well-documented structure, and widespread use in benchmarks [6].
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We focus on five well-known sorting algorithms: Bubble Sort swaps adjacent

elements to move the largest to the end (Listing 1). Selection Sort finds the smallest

unsorted element and swaps it with the first unsorted position (Listing 2). Insertion

Sort places each element into its correct position in the sorted part (Listing 3).

Merge Sort splits, sorts, and merges sublists recursively (Listing 4). Quick Sort

partitions around a pivot and sorts recursively (Listing 5). The goal is to improve

the analysis of code representations to show details that may not be immediately

obvious through standard methods.

It is necessary to note that GraphCodeBERT may sometimes produce results

that differ from expectations due to issues like tokenization errors, gaps in train-

ing data, or difficulties handling complex code structures. These issues can be ad-

dressed by expanding training datasets to include diverse programming languages

and styles, improving tokenization processes to align more closely with program-

ming syntax, and adding post-processing steps to ensure correctness. Regular testing

across varied cases helps maintain reliability, and methods like TF-IDF with Cosine

Similarity or AST-based Tree Kernels can serve as useful benchmarks for evaluating

these improvements.
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1 def bubble_sort(arr):

2 for i in range(len(arr)):

3 for j in range(0, n-i-1):

4 if arr[j] > arr[j+1]:

5 arr[j], arr[j+1] = arr[j+1], arr[j]

Listing 1: An implementation of the Bubble Sort algorithm as a simple comparison-

based sorting algorithm that repeatedly steps through the list.

1 def selection_sort(arr):

2 for i in range(len(arr)):

3 min_idx = i

4 for j in range(i+1, len(arr)):

5 if arr[j] < arr[min_idx ]:

6 min_idx = j

7 arr[i], arr[min_idx] = arr[min_idx], arr[i]

Listing 2: An implementation of the Selection Sort algorithm that repeatedly selects

the smallest element from the unsorted list portion.

1 def merge_sort(arr):

2 if len(arr) > 1:

3 mid = len(arr) // 2

4 L = arr[:mid]

5 R = arr[mid:]

6 merge_sort(L)

7 merge_sort(R)

8

9 i = j = k = 0

10 while i < len(L) and j < len(R):

11 if L[i] < R[j]:

12 arr[k] = L[i]

13 i += 1

14 else:

15 arr[k] = R[j]

16 j += 1

17 k += 1

18

19 while i < len(L):

20 arr[k] = L[i]

21 i += 1; k += 1

22

23 while j < len(R):

24 arr[k] = R[j]

25 j += 1; k += 1

Listing 3: An implementation of the Merge Sort algorithm that recursively divides

the array into two halves sorts each half and then merges them.
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1 def partition(arr , low , high):

2 pivot = arr[high]

3 i = low - 1

4

5 for j in range(low , high):

6 if arr[j] <= pivot:

7 i = i + 1

8 arr[i], arr[j] = arr[j], arr[i]

9

10 arr[i + 1], arr[high] = arr[high], arr[i + 1]

11 return i + 1

12

13 def quick_sort(arr , low , high):

14 if low < high:

15 pi = partition(arr , low , high)

16

17 quick_sort(arr , low , pi - 1)

18 quick_sort(arr , pi + 1, high)

Listing 4: An implementation of the Quick Sort algorithm that selects a pivot

partitions the array around the pivot and recursively sorts the subarrays.

1 def insertion_sort(arr):

2 for i in range(1, len(arr)):

3 key = arr[i]

4 j = i-1

5 while j >=0 and key < arr[j]:

6 arr[j + 1] = arr[j]

7 j -= 1

8 arr[j + 1] = key

Listing 5: An implementation of the Insertion Sort algorithm that builds the sorted

array one element at a time by repeatedly inserting elements.

Each algorithm was implemented in Python and represented as a code string.

These code strings were tokenized and processed through GraphCodeBERT to gen-

erate vector embeddings, which encapsulate the structural and semantic properties

of the code. The resulting similarities were visualized in a heatmap, as shown in

Figure 2.

The heatmap reveals that algorithms sharing similar structural patterns or op-

erational steps, such as Insertion Sort and Bubble Sort, exhibit higher similarity

scores. At the same time, algorithms with fundamentally different approaches, like

Quick Sort and Bubble Sort, display lower similarity scores. This approach provides

interesting insights into different sorting algorithms’ inherent relationships. Our goal

is that our approach can help us understand these results in greater depth.
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Fig. 2: Visualization of the similarity relationships among various classical sort-

ing algorithms using GraphCodeBERT. This heatmap shows how similar sorting

algorithms are, based on their structure and behavior, using GraphCodeBERT.

Algorithms like Bubble Sort and Insertion Sort, which follow similar step-by-step

processes, show higher similarity scores.

4.1. Pairwise Comparisons of Sorting Algorithms

We present pairwise comparisons of the sorting algorithms by projecting their token

embeddings into a two-dimensional space using PCA, t-SNE, and UMAP, respec-

tively. Our strategy helps to visualize the relationships between the embeddings in

a simplified form. Each image provided shows the distribution of token embeddings

for a specific pair of sorting algorithms, with different colors assigned to each al-

gorithm for a clear distinction. These visualizations allow us to observe how the

embeddings of different algorithms spread out in the 2D space.

Figures 3 and 4 use PCA to compare sorting algorithms through their token

embeddings. Similarly, Figures 5 and 6 apply t-SNE, focusing on the differences

and similarities in representation. Figures 7 and 8 rely on UMAP to map structural

patterns among these embeddings, providing an alternative view of the relation-

ships.
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(a) Bubble Sort vs. Selection Sort (b) Bubble Sort vs. Insertion Sort

(c) Bubble Sort vs. Merge Sort (d) Bubble Sort vs. Quick Sort

(e) Selection Sort vs. Insertion Sort

Fig. 3: Pairwise comparisons of classical sorting algorithms using PCA, showing the

token embeddings in a 2D space (Part 1).
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(a) Selection Sort vs. Merge Sort (b) Selection Sort vs. Quick Sort

(c) Insertion Sort vs. Merge Sort (d) Insertion Sort vs. Quick Sort

(e) Merge Sort vs. Quick Sort

Fig. 4: Pairwise comparisons of classical sorting algorithms using PCA, showing the

token embeddings in a 2D space (Part 2).
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(a) Bubble Sort vs. Selection Sort (b) Bubble Sort vs. Insertion Sort

(c) Bubble Sort vs. Merge Sort (d) Bubble Sort vs. Quick Sort

(e) Selection Sort vs. Insertion Sort

Fig. 5: Pairwise comparisons of classical sorting algorithms using t-SNE, showing

the token embeddings in a 2D space (Part 1).
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(a) Selection Sort vs. Merge Sort (b) Selection Sort vs. Quick Sort

(c) Insertion Sort vs. Merge Sort (d) Insertion Sort vs. Quick Sort

(e) Merge Sort vs. Quick Sort

Fig. 6: Pairwise comparisons of classical sorting algorithms using t-SNE, showing

the token embeddings in a 2D space (Part 2).
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(a) Bubble Sort vs. Selection Sort (b) Bubble Sort vs. Insertion Sort

(c) Bubble Sort vs. Merge Sort (d) Bubble Sort vs. Quick Sort

(e) Selection Sort vs. Insertion Sort

Fig. 7: Pairwise comparisons of classical sorting algorithms using UMAP, showing

the token-level embeddings in a 2D space (Part 1).
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(a) Selection Sort vs. Merge Sort (b) Selection Sort vs. Quick Sort

(c) Insertion Sort vs. Merge Sort (d) Insertion Sort vs. Quick Sort

(e) Merge Sort vs. Quick Sort

Fig. 8: Pairwise comparisons of classical sorting algorithms using UMAP, showing

the token-level embeddings in a 2D space (Part 2).
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4.2. Saliency Maps for Sorting Algorithms

Saliency maps provide a visual explanation of which parts of the input contributed

most to the model’s decisions, offering hints into how the model interprets the

similarities between the algorithms. These maps allow us to observe which tokens

the model focuses on when distinguishing between the sorting algorithms. Figure 9

illustrates the saliency maps for these comparisons, focusing on the critical areas of

attention within the token embeddings.

(a) Bubble Sort vs Selection Sort (b) Bubble Sort vs Insertion Sort

(c) Bubble Sort vs Merge Sort (d) Bubble Sort vs Quick Sort

(e) Selection Sort vs Insertion Sort (f) Selection Sort vs Merge Sort

(g) Selection Sort vs Quick Sort (h) Insertion Sort vs Merge Sort

(i) Insertion Sort vs Quick Sort (j) Merge Sort vs Quick Sort

Fig. 9: Saliency maps for pairwise comparisons of different sorting algorithms.
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The results show that this method holds considerable potential for various ap-

plications. For example, automated code reviews help reviewers quickly identify

redundancies, reducing maintenance costs. In refactoring, this method can assist

developers in determining code segments that can be optimized. Additionally, in

educational settings, this approach can aid in teaching by offering a deeper knowl-

edge of the underlying principles of algorithms.

4.3. Ablation Study

To examine the role of various components in our approach, we have conducted an

ablation study comparing configurations for analyzing the embeddings of the sorting

algorithms. This analysis has included comparing token embeddings representing

individual tokens in the code with pooled text embeddings, reducing the entire code

snippet into a single vector. The study can be found in our GitHub repositorya,

but some interesting facts are that token embeddings displayed distinct clusters

corresponding to each algorithm. In contrast, pooled text embeddings showed a

strong resemblance between Bubble Sort and Selection Sort due to their shared

processing style, while Quick Sort and Merge Sort were more distinct owing to their

different strategy.

5. Discussion

We have seen that our strategy can improve interpretability by presenting differ-

ent approaches to visualize similarities between code fragments through the use

of GraphCodeBERT. We have seen that this approach improves over traditional

comparison approaches, providing deeper insights into the functional similarities

between those fragments.

However, several areas deserve further investigation. One key area is the

method’s scalability when applied to larger projects. While our initial experiments

focused on relatively small examples, real-world software projects involve thousands

of lines of code. It could be interesting to assess how well the model performs under

such conditions in terms of the quality of the generated outputs.

Another important aspect is the applicability across different programming lan-

guages. Although our experiments produced promising results in single-language

comparisons, extending the evaluation to a broader range of languages would offer

a more complete assessment of the method’s usefulness.

Future work may also explore integrating this approach with other code analy-

sis methods. For instance, combining our method with static analysis or code met-

rics tools could improve code maintainability. Additionally, incorporating feedback

mechanisms where developers can refine the outputs could improve the usability of

the results.

ahttps://www.github.com/jorge-martinez-gil/graphcodebert-interpretability

https://www.github.com/jorge-martinez-gil/graphcodebert-interpretability
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6. Conclusion

Our research has introduced a novel strategy for increasing the interpretability ca-

pabilities of the similarity between code fragments using GraphCodeBERT. The

process is formalized through mathematical expressions, presenting a framework

that captures and displays the relationships in an interpretable visual format. Our

experimental results demonstrate the method’s effectiveness in explaining similari-

ties between code fragments.

This approach has implications for improving code understanding, guarantee-

ing code quality, and improving software development processes. Our method con-

tributes to developing more maintainable software systems by simplifying tasks such

as automated code review, refactoring, and plagiarism detection. Future research

will aim to expand the applicability of this method, potentially integrating it into

broader software engineering tools.

Additional future directions include the development of more language-agnostic

models and improvements in the integration of structural information. Furthermore,

exploring the combination of machine learning-based approaches with traditional

program analysis techniques could lead to more accurate models. However, chal-

lenges remain in generalizing across different programming languages and coding

styles.
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