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Abstract

Open data initiatives continue to grow, and with them, the number of independent catalogs pub-

lished across various platforms. Comparing these catalogs helps with tasks such as improving

search quality, linking related datasets, and maintaining consistent metadata. This paper sur-

veys methods for measuring similarity between open data catalogs. Approaches include matching

structured elements like triples, applying hashing techniques to domain-specific terms, and using

semantic representations to align catalog contents. Each method comes with different assumptions

about how metadata is structured and how records can be matched. We also examine practical

limitations, such as poor metadata quality, differences in schema, and limited availability of shared

benchmarks. The final section outlines directions for future work, including cross-lingual cata-

log matching, automated metadata enrichment, and techniques that better scale to large catalog

collections.
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1. Introduction

In times when the use of data has exploded exponentially, open data catalogs (ODCs) have

emerged as an indispensable source of information that facilitates transparency, innovation, and

multidisciplinary collaboration [1]. These catalogs, which often must be manually curated through

government agencies, research organizations, or even non-profit organizations, offer invaluable

knowledge spanning a wide range of disciplines, industries, and geographies [8]. However, as the

volume of ODCs skyrockets, methods and tools are needed to facilitate their proper processing.

For example, to assess their quality [2], to quantify their similarity [16], to use them in an effective

way [22], and so on.

The concept of catalog similarity goes far beyond the mere comparison of metadata. The reason

is that behind this concept lies a significant challenge in interconnecting different data repositories.
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Therefore, the possibility of automatically determining the similarity of ODC can positively impact

a large group of professionals involved in data economics, for example, researchers, policymakers,

scientists, etc. In this way, providing methods and tools that facilitate the effective and efficient

comparison of ODCs can facilitate decision-making processes and multidisciplinary collaborations,

and it holds great potential for the collective use and analysis of open data.

This research is designed to examine how similarity between ODCs can be measured using

a variety of methods. We aim to present the main approaches available, covering a range of

computational strategies that have been proposed or applied to this problem. The objective is to

organize these options in a way that helps users understand their differences and practical use.

We also intend to give users a way to decide which method fits best depending on the structure,

size, and purpose of the catalogs being compared. The broader aim is to make open data easier to

connect and reuse in practical settings across science, policy, and digital services.

The remainder of this paper is structured as follows: Section 2 introduces related work concern-

ing similarity between ODCs and challenges that remain pending. Section 3 provides an illustrative

overview of existing methods to address the challenge of ODC similarity using different computa-

tional approaches. Section 4 presents the lessons that can be drawn from this research and possible

future research directions.

2. Related Works

ODCs are typically used to describe and organize data assets, making them more discoverable

and accessible for the stakeholders of an organization. The standard DCAT (Data Catalog Vocabu-

lary) [9] is a widely used specification for describing data catalogs, often used with government and

open data portals [13]. When comparing two DCAT data catalogs, it is possible to find similarities

in various aspects inherent to them.

The aspects that should be considered in a specific situation are an open discussion. However,

some viewpoints suggest assessing metadata elements for similarities, including title, description,

keywords, publisher, contact information, access URLs, data formats, and licenses, should work

fine in general cases. The organizational structure of the catalogs, whether hierarchical or based

on tags and keywords, is also a widely suggested option for cases of this kind.

Other aspects that could be considered are compliance with standards like DCAT and addi-

tional metadata elements or support for standards like CKAN1 or Dublin Core2. Also, the data

1https://ckan.org/
2https://www.dublincore.org/
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format and licensing model compatibility suggest similarities in ODCs. The search and discovery

capabilities, including filters and faceted search, and other advanced options could also be eval-

uated, along with methods for accessing data such as direct downloads or APIs. Additionally,

the sources and diversity of data, data coverage, versioning support, metadata quality, update

frequency, and the use of linked data principles for semantic relationships can also be sources of

great value to be investigated.

However, several challenges remain open in the field, and there is still a need for solutions to

handle them, including standardized metadata schemas, addressing data quality issues [15], and

managing evolving catalogs. Additionally, as open data initiatives evolve, future research should

focus on dynamic and real-time similarity assessment, multi-modal data catalogs, and cross-domain

catalog comparisons. In this work, we try to shed light on the topic of similarity [19], as we try

to identify ways in which similarity could be determined automatically [10, 17]. These directions

may help support more scalable and interoperable infrastructures for data reuse across different

domains.

3. Similarity Methods for Open Data Catalogs

Similarity methods for ODCs play a crucial role in enhancing the discoverability [14] of vast

and diverse datasets available in the public domain. These methods could, for example, employ

techniques such as natural language processing [4, 20], metadata analysis through machine learning

[6, 7], and other kind of semantic-based techniques, or even sophisticated combinations of all of

these methods [5], to establish connections and relationships between datasets based on their

content, structure, and context. Although this topic is still very incipient, some authors have some

works that focus additionally on the interpretability [18] to help stakeholders understand how the

similarity value is calculated.

In this work, we focus on calculating similarity scores [11] since this should enable users to find

datasets relevant to their specific needs, even when they may not know the exact dataset names

or categories. The rationale behind this approach is to facilitate more efficient data discovery and

encourages data reuse and integration across domains. This can lead to increased collaboration,

innovation, and democratizing data-driven insights [12]. As the volume of open data grows, similar-

ity methods remain essential to work with ODCs and address complex challenges and data-driven

decision-making processes.

In the context of this work, we are going to focus on an illustrative technique for each of the

existing approaches:
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1. Considering the two ODCs as two repositories of triples.

2. Considering the two ODCs as two repositories of tokens.

3. Considering the two ODCs as two character sequences.

4. Considering the two ODCs as two documents written in a common purpose-specific language.

We will now go deeper into the technical details of these approaches, exploring their unique

attributes, advantages, and potential challenges to gain a comprehensive understanding of their

applicability and potential.

3.1. Considering the two ODCs as two repositories of triples

Calculating the similarity between two ODCs, considering them as repositories of triples, in-

volves comparing the triples associated with the datasets in each ODC to determine their similarity.

This process can be helpful in various data-related tasks, such as data integration or alignment,

where the people work with a granularity at the level of triples.

The idea is simple and based on calculating the similarity between two sets of triples by iterating

through each triple in both ODCs and counting the number of triples common to both ODCs.

Algorithm 1 shows us how an algorithm could implement this. The significant advantage of this

method is its simplicity and ease of understanding.

Algorithm 1 Calculate Similarity Between Two Repositories of Triples

1: Initialize an empty RDF graph g
2: Parse ODCs into g
3: Initialize two empty sets triples and triples2
4: for each triple (s, p, o) in g where s = dataset 001 do
5: Add o to triples
6: end for
7: for each triple (s, p, o) in g where s = dataset 002 do
8: Add o to triples2
9: end for

10: Initialize similarity to 0
11: for each triple p1 in triples do
12: for each triple p2 in triples2 do
13: if p1 = p2 then
14: Increment similarity by 1
15: end if
16: end for
17: end for
18: Calculate similarity as similarity/max(length of triples, length of triples2)
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3.2. Considering the two ODCs as two repositories of tokens

Calculating the similarity of two ODCs as two repositories of tokens, whether ordered or un-

ordered, can offer several advantages. For example, tokenizing and comparing data catalogs based

on their tokens allows us to identify similarities without loading and processing the entire datasets

quickly. Moreover, the calculations to be performed are highly scalable. The reason is that, as the

size of the ODC grows, the computational cost of comparing tokens remains relatively low.

Algorithm 2 encapsulates the CheckSimilarity function to calculate the similarity between two

ODCs (converted into sets of RDF data) using TF-IDF vectorization and cosine similarity. The

idea is first to convert the ODC into TF-IDF feature vectors and then compute the cosine similarity

between these vectors, representing the similarity between the two ODCs. The result is scaled to a

percentage and returned as the final similarity score. Comparing the similarity is commonly used

in many natural language processing tasks.

Algorithm 2 Calculate Similarity Between Two Repositories of Tokens

1: function Similarity(odc, odc2)
2: vectorizer ← TfidfV ectorizer()
3: tfidf matrix← vectorizer.fit transform([odc, odc2])
4: cosine sim← cosine similarity(tfidf matrix[0], tfidf matrix[1])[0][0]
5: return cosine sim
6: end function

3.3. Considering the two ODCs as two character sequences

Calculating the similarity of two ODCs using the Longest Common Subsequence (LCS) [3]

method involves finding the longest sequence of items common to both catalogs. LCS provides

a structured approach to aligning sequences of characters. This alignment helps understand how

data items in one catalog correspond to those in the other, which can be crucial for data matching

and integration. The LCS method is often used in various fields to measure the similarity between

sequences, such as information retrieval, text analysis, etc.

Algorithm 3 is intended to construct a matrix dynamically and iteratively comparing their

elements. It utilizes dynamic programming to find the maximum common subsequence length and

returns this value.

Algorithm 4 calculates the similarity between two ODCs. The idea is first to determine their

LCS’s length and then normalize it by dividing it by the maximum length of the input sequences.

The result is a similarity score between 0 and 1, where 1 indicates complete similarity, and 0

indicates no commonality.
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Algorithm 3 Calculation of the Longest Common Subsequence

1: function LCS(odc, odc2)
2: m← length(odc)
3: n← length(odc2)
4: lcs matrix← initialize a 2D array of size (m+ 1)× (n+ 1) filled with zeros
5: for i← 1 to m do
6: for j ← 1 to n do
7: if odc[i− 1] = odc2[j − 1] then
8: lcs matrix[i][j]← lcs matrix[i− 1][j − 1] + 1
9: else

10: lcs matrix[i][j]← max(lcs matrix[i− 1][j], lcs matrix[i][j − 1])
11: end if
12: end for
13: end for
14: return lcs matrix[m][n]
15: end function

Algorithm 4 ODC Similarity Calculation using LCS

1: function Similarity(odc, odc2)
2: lcs length← LCS(odc, odc2)
3: return lcs length

max(length(odc),length(odc2))

4: end function

The great advantage of the LCS method is that it primarily measures structural similarity

based on the order of items in the catalogs. If the order of items is crucial for the analysis, the

LCS method can be suitable. However, in cases where the item order is less important, it is better

to consider other token-based measures, which focus on item presence or vector representations of

the ODCs.

3.4. Considering the two ODCs as two documents written in a common purpose-specific language

These methods are known for their computational efficiency, especially when working with huge

volumes of text data. It can quickly process large volumes of data, making it a potentially fast

approach for performing calculations. To illustrate this approach, we have chosen the Winnow

hashing algorithm [21], which works very well in identifying similarities between specific-purpose

languages.

The Algorithm 5 adapts the famous Winnow algorithm that takes a text and an integer k,

splitting the text into k-grams, hashing them, and finding the minimum hash value within sliding

windows. This process creates a very valuable fingerprint of the text for later processing and

comparison.
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Algorithm 5 Winnow Algorithm

1: function Winnow(text, k)
2: k−grams← emptylist
3: for i← 0 to len(text)− k do
4: append (k−grams, text[i : i+ k])
5: end for
6: hashes← emptylist
7: for k − gramink−grams do
8: append (hashes, hash(k − gram))
9: end for

10: w ← 10
11: min hashes← emptylist
12: for i← 0 to len(hashes)− w do
13: min hash← min(hashes[i : i+ w])
14: append (min hashes,min hash)
15: end for
16: return min hashes
17: end function

As a second step, Algorithm 6 compares two fingerprints previously calculated using Algorithm

5 by calculating the Jaccard similarity coefficient between their fingerprints. As with previous

cases, a higher Jaccard similarity indicates greater similarity between the texts, making these

algorithms useful for measuring ODC similarity efficiently.

Algorithm 6 ODC Similarity Calculation using Winnow Hashing

1: function Similarity(odc, odc2)
2: k ← 5
3: fingerprint1← set(Winnow(odc, k))
4: fingerprint2← set(Winnow(odc2, k))
5: return len

(fingerprint1∩fingerprint2) len(fingerprint1 ∪ fingerprint2)

6: end function

4. Conclusion

This research surveys several approaches to measuring similarity between Open Data Catalogs

(ODCs), showing the range of techniques applied to this task. Methods include simple triple-based

comparisons as well as approaches that use semantic signals adapted to specific data vocabularies.

These options differ in what they capture, how scalable they are, and how well they generalize

across types of data. Choosing a method requires attention to the structure and goals of the

catalogs being compared.
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Different types of catalogs require different strategies. Domain-specific metadata, the level of

structure in descriptions, and the presence of standardized vocabularies all affect which methods are

suitable. The number of entries, the consistency of metadata, and the language used across entries

can also affect similarity results. Technical constraints such as indexing efficiency or available

memory may limit which techniques are feasible in larger deployments.

Future work should continue exploring this direction, focusing on scalable, adaptive, and

context-aware methods for catalog similarity. There is also room for hybrid approaches that

combine structural, lexical, and semantic signals, as well as methods that incorporate user inter-

action or relevance feedback to refine similarity estimates. As open data initiatives expand, and

cross-catalog data integration becomes more common, reliable similarity measures will be essential

for enhancing data interoperability, supporting intelligent catalog navigation, and enabling more

effective dataset recommendation and reuse across diverse domains and organizational contexts.
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